Lu Chen, Yanping Chen, Jian-Bao Huang, Ji-Yan Zhang
{"title":"LncRNA LINC00707作为miR-382-5p的海绵,通过上调婴儿肺炎中的NKAP来减轻脂多糖(LPS)诱导的WI-38细胞损伤","authors":"Lu Chen, Yanping Chen, Jian-Bao Huang, Ji-Yan Zhang","doi":"10.1080/08916934.2022.2062594","DOIUrl":null,"url":null,"abstract":"Abstract Infantile pneumonia (IP) is an acute lower respiratory infection that imposes a heavy burden on children’s health. Increasing evidence has demonstrated that long non-coding RNA (lncRNA) LINC00707 participates in the regulation of the pneumonia process. Cell proliferative ability and apoptosis were measured using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Bcl-2 related X protein (Bax), NF-kB activating protein (NKAP), p-P65, P65, p-IκBα, and IκBα protein levels were detected using western blot assay. The binding between miR-382-5p and LINC00707 or NKAP was predicted by starBase v2.0 and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. LINC00707 and NKAP levels were increased, and miR-382-5p was decreased in LPS-stimulated WI-38 cells. Furthermore, the silencing of LINC00707 could abrogate LPS-engendered WI-38 cell proliferation, apoptosis, and oxidative stress. LINC00707 deficiency could relieve LPS-triggered WI-38 cell damage by regulating the miR-382-5p/NKAP axis, providing a new therapeutic strategy for IP treatment.","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"55 1","pages":"328 - 338"},"PeriodicalIF":3.3000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LncRNA LINC00707 serves as a sponge of miR-382-5p to alleviate lipopolysaccharide (LPS)-induced WI-38 cell injury through upregulating NKAP in infantile pneumonia\",\"authors\":\"Lu Chen, Yanping Chen, Jian-Bao Huang, Ji-Yan Zhang\",\"doi\":\"10.1080/08916934.2022.2062594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Infantile pneumonia (IP) is an acute lower respiratory infection that imposes a heavy burden on children’s health. Increasing evidence has demonstrated that long non-coding RNA (lncRNA) LINC00707 participates in the regulation of the pneumonia process. Cell proliferative ability and apoptosis were measured using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Bcl-2 related X protein (Bax), NF-kB activating protein (NKAP), p-P65, P65, p-IκBα, and IκBα protein levels were detected using western blot assay. The binding between miR-382-5p and LINC00707 or NKAP was predicted by starBase v2.0 and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. LINC00707 and NKAP levels were increased, and miR-382-5p was decreased in LPS-stimulated WI-38 cells. Furthermore, the silencing of LINC00707 could abrogate LPS-engendered WI-38 cell proliferation, apoptosis, and oxidative stress. LINC00707 deficiency could relieve LPS-triggered WI-38 cell damage by regulating the miR-382-5p/NKAP axis, providing a new therapeutic strategy for IP treatment.\",\"PeriodicalId\":8688,\"journal\":{\"name\":\"Autoimmunity\",\"volume\":\"55 1\",\"pages\":\"328 - 338\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2022.2062594\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2022.2062594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
LncRNA LINC00707 serves as a sponge of miR-382-5p to alleviate lipopolysaccharide (LPS)-induced WI-38 cell injury through upregulating NKAP in infantile pneumonia
Abstract Infantile pneumonia (IP) is an acute lower respiratory infection that imposes a heavy burden on children’s health. Increasing evidence has demonstrated that long non-coding RNA (lncRNA) LINC00707 participates in the regulation of the pneumonia process. Cell proliferative ability and apoptosis were measured using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Bcl-2 related X protein (Bax), NF-kB activating protein (NKAP), p-P65, P65, p-IκBα, and IκBα protein levels were detected using western blot assay. The binding between miR-382-5p and LINC00707 or NKAP was predicted by starBase v2.0 and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. LINC00707 and NKAP levels were increased, and miR-382-5p was decreased in LPS-stimulated WI-38 cells. Furthermore, the silencing of LINC00707 could abrogate LPS-engendered WI-38 cell proliferation, apoptosis, and oxidative stress. LINC00707 deficiency could relieve LPS-triggered WI-38 cell damage by regulating the miR-382-5p/NKAP axis, providing a new therapeutic strategy for IP treatment.
期刊介绍:
Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.