关节软骨组织工程的最新仿生方法及其临床应用:文献综述

IF 1.2 Q3 ORTHOPEDICS
Hamza Abu Owida
{"title":"关节软骨组织工程的最新仿生方法及其临床应用:文献综述","authors":"Hamza Abu Owida","doi":"10.1155/2022/8670174","DOIUrl":null,"url":null,"abstract":"Since articular cartilage is lacking blood vessels and nerves, its capacity to heal is extremely limited. This means that ruptured cartilage affects the joint as a whole. A health issue known as osteoarthritis can develop as a result of injury and deterioration. Osteoarthritis development can be speeded up by the widespread deterioration of articular cartilage, which ranks third on the list of musculoskeletal disorders requiring rehabilitation, behind only low back pain and broken bones. The current treatments for cartilage repair are ineffective and rarely restore full function or tissue normalcy. A promising new technology in tissue engineering may help create functional cartilage tissue substitutes. Ensuring that the cell source is loaded with bioactive molecules that promote cellular differentiation and/or maturation is the general approach. This review summarizes recent advances in cartilage tissue engineering, and recent clinical trials have been conducted to provide a comprehensive overview of the most recent research developments and clinical applications in the framework of degenerated articular cartilage and osteoarthritis.","PeriodicalId":7358,"journal":{"name":"Advances in Orthopedics","volume":"2022 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recent Biomimetic Approaches for Articular Cartilage Tissue Engineering and Their Clinical Applications: Narrative Review of the Literature\",\"authors\":\"Hamza Abu Owida\",\"doi\":\"10.1155/2022/8670174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since articular cartilage is lacking blood vessels and nerves, its capacity to heal is extremely limited. This means that ruptured cartilage affects the joint as a whole. A health issue known as osteoarthritis can develop as a result of injury and deterioration. Osteoarthritis development can be speeded up by the widespread deterioration of articular cartilage, which ranks third on the list of musculoskeletal disorders requiring rehabilitation, behind only low back pain and broken bones. The current treatments for cartilage repair are ineffective and rarely restore full function or tissue normalcy. A promising new technology in tissue engineering may help create functional cartilage tissue substitutes. Ensuring that the cell source is loaded with bioactive molecules that promote cellular differentiation and/or maturation is the general approach. This review summarizes recent advances in cartilage tissue engineering, and recent clinical trials have been conducted to provide a comprehensive overview of the most recent research developments and clinical applications in the framework of degenerated articular cartilage and osteoarthritis.\",\"PeriodicalId\":7358,\"journal\":{\"name\":\"Advances in Orthopedics\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Orthopedics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8670174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Orthopedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8670174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 6

摘要

由于关节软骨缺乏血管和神经,其愈合能力极为有限。这意味着软骨破裂会影响整个关节。一种被称为骨关节炎的健康问题可能会因损伤和恶化而发展。关节软骨的广泛恶化可以加速骨关节炎的发展,关节软骨在需要康复的肌肉骨骼疾病中排名第三,仅次于腰痛和骨折。目前软骨修复的治疗方法是无效的,很少能恢复全部功能或组织正常。组织工程中一项有前景的新技术可能有助于创造功能性软骨组织替代品。确保细胞源负载有促进细胞分化和/或成熟的生物活性分子是一般方法。这篇综述总结了软骨组织工程的最新进展,并进行了最新的临床试验,以全面概述退化关节软骨和骨关节炎框架内的最新研究进展和临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Biomimetic Approaches for Articular Cartilage Tissue Engineering and Their Clinical Applications: Narrative Review of the Literature
Since articular cartilage is lacking blood vessels and nerves, its capacity to heal is extremely limited. This means that ruptured cartilage affects the joint as a whole. A health issue known as osteoarthritis can develop as a result of injury and deterioration. Osteoarthritis development can be speeded up by the widespread deterioration of articular cartilage, which ranks third on the list of musculoskeletal disorders requiring rehabilitation, behind only low back pain and broken bones. The current treatments for cartilage repair are ineffective and rarely restore full function or tissue normalcy. A promising new technology in tissue engineering may help create functional cartilage tissue substitutes. Ensuring that the cell source is loaded with bioactive molecules that promote cellular differentiation and/or maturation is the general approach. This review summarizes recent advances in cartilage tissue engineering, and recent clinical trials have been conducted to provide a comprehensive overview of the most recent research developments and clinical applications in the framework of degenerated articular cartilage and osteoarthritis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
36
审稿时长
21 weeks
期刊介绍: Advances in Orthopedics is a peer-reviewed, Open Access journal that provides a forum for orthopaedics working on improving the quality of orthopedic health care. The journal publishes original research articles, review articles, and clinical studies related to arthroplasty, hand surgery, limb reconstruction, pediatric orthopaedics, sports medicine, trauma, spinal deformities, and orthopaedic oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信