绝对的弗拉蒂尼自同构

Q4 Mathematics
Parisa Seifizadeh, Amirali Farokhniaee
{"title":"绝对的弗拉蒂尼自同构","authors":"Parisa Seifizadeh, Amirali Farokhniaee","doi":"10.24193/mathcluj.2023.1.14","DOIUrl":null,"url":null,"abstract":"Let G be a finite non-abelian p-group, where p is a prime number, and Aut(G) be the group of all automorphisms of $G$. An automorphism alpha of $G$ is called absolute central automorphism if, x^{-1}alpha(x) lies in L(G), where L(G) is the absolute center of G. In addition, alpha is an absolute Frattini automorphism if x^{-1}alpha(x) is in Phi(L(G)), where Phi(L(G)) is the Frattini subgroup of the absolute center of G, and let LF(G) denote the group of all such automorphisms of G. Also, we denote by C_{LF(G)}(Z(G)) and C_{LA(G)}(Z(G)), respectively, the group of all absolute Frattini automorphisms and the group of all absolute central automorphisms of G, fixing elementwise the center Z(G) of G . We give necessary and sufficient conditions on a finite non-abelian p-group G of class two such that C_{LF(G)}(Z(G))=C_{LA(G)}(Z(G)). Moreover, we investigate the conditions under which LF(G) is a torsion-free abelian group.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The absolute Frattini automorphisms\",\"authors\":\"Parisa Seifizadeh, Amirali Farokhniaee\",\"doi\":\"10.24193/mathcluj.2023.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite non-abelian p-group, where p is a prime number, and Aut(G) be the group of all automorphisms of $G$. An automorphism alpha of $G$ is called absolute central automorphism if, x^{-1}alpha(x) lies in L(G), where L(G) is the absolute center of G. In addition, alpha is an absolute Frattini automorphism if x^{-1}alpha(x) is in Phi(L(G)), where Phi(L(G)) is the Frattini subgroup of the absolute center of G, and let LF(G) denote the group of all such automorphisms of G. Also, we denote by C_{LF(G)}(Z(G)) and C_{LA(G)}(Z(G)), respectively, the group of all absolute Frattini automorphisms and the group of all absolute central automorphisms of G, fixing elementwise the center Z(G) of G . We give necessary and sufficient conditions on a finite non-abelian p-group G of class two such that C_{LF(G)}(Z(G))=C_{LA(G)}(Z(G)). Moreover, we investigate the conditions under which LF(G) is a torsion-free abelian group.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设G为有限非阿贝尔p群,其中p为素数,Aut(G)为G的所有自同构的群。$G$的一个自同构称为绝对中心自同构,如果x^{-1}alpha(x)在L(G)中,其中L(G)是G的绝对中心。此外,如果x^{-1}alpha(x)在Phi(L(G))中,其中Phi(L(G))是G的绝对中心的Frattini子群,则alpha是一个绝对Frattini自同构,设LF(G)表示G的所有这些自同构的群。我们分别用C_{LF(G)}(Z(G))和C_{LA(G)}(Z(G))表示。所有绝对Frattini自同构的群和G的所有绝对中心自同构的群,固定了G的中心Z(G)。给出了一类有限非阿贝尔p群G的C_{LF(G)}(Z(G))=C_{LA(G)}(Z(G))的充分必要条件。此外,我们还研究了LF(G)是无扭阿贝尔群的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The absolute Frattini automorphisms
Let G be a finite non-abelian p-group, where p is a prime number, and Aut(G) be the group of all automorphisms of $G$. An automorphism alpha of $G$ is called absolute central automorphism if, x^{-1}alpha(x) lies in L(G), where L(G) is the absolute center of G. In addition, alpha is an absolute Frattini automorphism if x^{-1}alpha(x) is in Phi(L(G)), where Phi(L(G)) is the Frattini subgroup of the absolute center of G, and let LF(G) denote the group of all such automorphisms of G. Also, we denote by C_{LF(G)}(Z(G)) and C_{LA(G)}(Z(G)), respectively, the group of all absolute Frattini automorphisms and the group of all absolute central automorphisms of G, fixing elementwise the center Z(G) of G . We give necessary and sufficient conditions on a finite non-abelian p-group G of class two such that C_{LF(G)}(Z(G))=C_{LA(G)}(Z(G)). Moreover, we investigate the conditions under which LF(G) is a torsion-free abelian group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信