一种雾计算的在线公平资源分配解决方案

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jiawei Sun, Salimur Choudhury, K. Salomaa
{"title":"一种雾计算的在线公平资源分配解决方案","authors":"Jiawei Sun, Salimur Choudhury, K. Salomaa","doi":"10.1080/17445760.2022.2061484","DOIUrl":null,"url":null,"abstract":"Fog computing is a complementary computing paradigm to the existing cloud computing. A fundamental problem of fog computing is how to allocate the computing resources of fog nodes when scheduling tasks that arrive in an online manner. Other than task completion speed metrics, fairness of resource allocation between competing users is also an important metric to consider. One such metric is Dominant Resource Fairness (DRF), a fairness scheme that guarantees four key qualities: incentivised sharing, strategy-proof, Pareto-efficiency, and envy free. This paper examines the multi-resource, multi-server, and heterogeneous task resource allocation problem from a DRF perspective. Four different types of tasks are considered: ordered/unordered and splittable/unsplittable. Three low complexity heuristics are proposed to maximise fairness between users. Results show that the proposed heuristics are at least comparable to three baseline scheduling algorithms in terms of task completion speed while achieving higher fairness between users.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An online fair resource allocation solution for fog computing\",\"authors\":\"Jiawei Sun, Salimur Choudhury, K. Salomaa\",\"doi\":\"10.1080/17445760.2022.2061484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing is a complementary computing paradigm to the existing cloud computing. A fundamental problem of fog computing is how to allocate the computing resources of fog nodes when scheduling tasks that arrive in an online manner. Other than task completion speed metrics, fairness of resource allocation between competing users is also an important metric to consider. One such metric is Dominant Resource Fairness (DRF), a fairness scheme that guarantees four key qualities: incentivised sharing, strategy-proof, Pareto-efficiency, and envy free. This paper examines the multi-resource, multi-server, and heterogeneous task resource allocation problem from a DRF perspective. Four different types of tasks are considered: ordered/unordered and splittable/unsplittable. Three low complexity heuristics are proposed to maximise fairness between users. Results show that the proposed heuristics are at least comparable to three baseline scheduling algorithms in terms of task completion speed while achieving higher fairness between users.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2022.2061484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2022.2061484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

雾计算是对现有云计算的一种补充计算模式。雾计算的一个基本问题是,在调度以在线方式到达的任务时,如何分配雾节点的计算资源。除了任务完成速度指标外,竞争用户之间资源分配的公平性也是一个需要考虑的重要指标。其中一个指标是显性资源公平(DRF),这是一种公平方案,保证了四个关键品质:激励共享、战略证明、帕累托效率和无嫉妒。本文从DRF的角度研究了多资源、多服务器和异构任务资源分配问题。考虑了四种不同类型的任务:有序/无序和可拆分/不可拆分。提出了三种低复杂度启发式算法,以最大限度地提高用户之间的公平性。结果表明,所提出的启发式算法在任务完成速度方面至少与三种基线调度算法相当,同时实现了用户之间更高的公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An online fair resource allocation solution for fog computing
Fog computing is a complementary computing paradigm to the existing cloud computing. A fundamental problem of fog computing is how to allocate the computing resources of fog nodes when scheduling tasks that arrive in an online manner. Other than task completion speed metrics, fairness of resource allocation between competing users is also an important metric to consider. One such metric is Dominant Resource Fairness (DRF), a fairness scheme that guarantees four key qualities: incentivised sharing, strategy-proof, Pareto-efficiency, and envy free. This paper examines the multi-resource, multi-server, and heterogeneous task resource allocation problem from a DRF perspective. Four different types of tasks are considered: ordered/unordered and splittable/unsplittable. Three low complexity heuristics are proposed to maximise fairness between users. Results show that the proposed heuristics are at least comparable to three baseline scheduling algorithms in terms of task completion speed while achieving higher fairness between users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信