{"title":"基于多元混合模型的自相关多元线性剖面在线监测","authors":"Somayeh Khalili, R. Noorossana","doi":"10.1080/16843703.2021.2015834","DOIUrl":null,"url":null,"abstract":"ABSTRACT Multivariate multiple profile monitoring has been studied extensively over the past few years. Most of these studies assumed that the observations are uncorrelated, which could be violated in practice. In this paper, multivariate linear mixed model is proposed to allow correlation among observations of the multivariate multiple linear profiles. In order to monitor random effects and process variability in phase II, three control charts are suggested. The results of performance comparisons with an existing method show the superiority of the proposed control chart. Finally, the applicability of the proposed method is illustrated using a real case.","PeriodicalId":49133,"journal":{"name":"Quality Technology and Quantitative Management","volume":"19 1","pages":"319 - 340"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online monitoring of autocorrelated multivariate linear profiles via multivariate mixed models\",\"authors\":\"Somayeh Khalili, R. Noorossana\",\"doi\":\"10.1080/16843703.2021.2015834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Multivariate multiple profile monitoring has been studied extensively over the past few years. Most of these studies assumed that the observations are uncorrelated, which could be violated in practice. In this paper, multivariate linear mixed model is proposed to allow correlation among observations of the multivariate multiple linear profiles. In order to monitor random effects and process variability in phase II, three control charts are suggested. The results of performance comparisons with an existing method show the superiority of the proposed control chart. Finally, the applicability of the proposed method is illustrated using a real case.\",\"PeriodicalId\":49133,\"journal\":{\"name\":\"Quality Technology and Quantitative Management\",\"volume\":\"19 1\",\"pages\":\"319 - 340\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Technology and Quantitative Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/16843703.2021.2015834\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Technology and Quantitative Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/16843703.2021.2015834","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Online monitoring of autocorrelated multivariate linear profiles via multivariate mixed models
ABSTRACT Multivariate multiple profile monitoring has been studied extensively over the past few years. Most of these studies assumed that the observations are uncorrelated, which could be violated in practice. In this paper, multivariate linear mixed model is proposed to allow correlation among observations of the multivariate multiple linear profiles. In order to monitor random effects and process variability in phase II, three control charts are suggested. The results of performance comparisons with an existing method show the superiority of the proposed control chart. Finally, the applicability of the proposed method is illustrated using a real case.
期刊介绍:
Quality Technology and Quantitative Management is an international refereed journal publishing original work in quality, reliability, queuing service systems, applied statistics (including methodology, data analysis, simulation), and their applications in business and industrial management. The journal publishes both theoretical and applied research articles using statistical methods or presenting new results, which solve or have the potential to solve real-world management problems.