Enriques和brauer类

IF 0.8 2区 数学 Q2 MATHEMATICS
A. Skorobogatov, D. Valloni
{"title":"Enriques和brauer类","authors":"A. Skorobogatov, D. Valloni","doi":"10.1017/nmj.2022.43","DOIUrl":null,"url":null,"abstract":"Abstract We prove that every element of order 2 in the Brauer group of a complex Kummer surface X descends to an Enriques quotient of X. In generic cases, this gives a bijection between the set \n${\\mathcal Enr}(X)$\n of Enriques quotients of X up to isomorphism and the set of Brauer classes of X of order 2. For some K3 surfaces of Picard rank \n$20,$\n we prove that the fibers of \n${\\mathcal Enr}(X)\\to \\mathrm {{Br}}(X)[2]$\n above the nonzero points have the same cardinality.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"251 1","pages":"606 - 621"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ENRIQUES INVOLUTIONS AND BRAUER CLASSES\",\"authors\":\"A. Skorobogatov, D. Valloni\",\"doi\":\"10.1017/nmj.2022.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that every element of order 2 in the Brauer group of a complex Kummer surface X descends to an Enriques quotient of X. In generic cases, this gives a bijection between the set \\n${\\\\mathcal Enr}(X)$\\n of Enriques quotients of X up to isomorphism and the set of Brauer classes of X of order 2. For some K3 surfaces of Picard rank \\n$20,$\\n we prove that the fibers of \\n${\\\\mathcal Enr}(X)\\\\to \\\\mathrm {{Br}}(X)[2]$\\n above the nonzero points have the same cardinality.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"251 1\",\"pages\":\"606 - 621\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.43\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.43","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要证明了复Kummer曲面X的Brauer群中的每一个2阶元素都降为X的Enriques商。在一般情况下,给出了X的Enriques商的同构集${\数学Enr}(X)$与X的Brauer类的2阶集之间的双射。对于一些Picard秩为$20的K3曲面,我们证明了${\ mathal Enr}(X)\到$ mathal {{Br}}(X)[2]$的非零点以上的纤维具有相同的基数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENRIQUES INVOLUTIONS AND BRAUER CLASSES
Abstract We prove that every element of order 2 in the Brauer group of a complex Kummer surface X descends to an Enriques quotient of X. In generic cases, this gives a bijection between the set ${\mathcal Enr}(X)$ of Enriques quotients of X up to isomorphism and the set of Brauer classes of X of order 2. For some K3 surfaces of Picard rank $20,$ we prove that the fibers of ${\mathcal Enr}(X)\to \mathrm {{Br}}(X)[2]$ above the nonzero points have the same cardinality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信