{"title":"局部线性紧向量空间和域扩展的拓扑熵","authors":"I. Castellano","doi":"10.1515/taa-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝕂 be a discrete field and (V, ϕ) a pair consisting of a locally linearly compact 𝕂-space V and a continuous endomorphism ϕ: V → V. We provide the formulae to compute the topological entropy ent* of the flow (V, ϕ) subject to either extension or restriction of scalars.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"8 1","pages":"58 - 66"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2020-0005","citationCount":"5","resultStr":"{\"title\":\"Topological entropy for locally linearly compact vector spaces and field extensions\",\"authors\":\"I. Castellano\",\"doi\":\"10.1515/taa-2020-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝕂 be a discrete field and (V, ϕ) a pair consisting of a locally linearly compact 𝕂-space V and a continuous endomorphism ϕ: V → V. We provide the formulae to compute the topological entropy ent* of the flow (V, ϕ) subject to either extension or restriction of scalars.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"8 1\",\"pages\":\"58 - 66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2020-0005\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2020-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Topological entropy for locally linearly compact vector spaces and field extensions
Abstract Let 𝕂 be a discrete field and (V, ϕ) a pair consisting of a locally linearly compact 𝕂-space V and a continuous endomorphism ϕ: V → V. We provide the formulae to compute the topological entropy ent* of the flow (V, ϕ) subject to either extension or restriction of scalars.