OC6项目第三阶段:风力发电机转子在浮式支撑结构引起的大运动下的气动载荷验证

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
R. Bergua, A. Robertson, J. Jonkman, E. Branlard, A. Fontanella, M. Belloli, P. Schito, A. Zasso, G. Persico, A. Sanvito, E. Amet, C. Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, A. Beardsell, G. Pirrung, N. Ramos‐García, W. Shi, J. Fu, Rémi Corniglion, A. Lovera, J. Galván, T. Nygaard, Carlos Renan dos Santos, P. Gilbert, Pierre-Antoine Joulin, F. Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, R. Boisard, Kutay Yilmazlar, A. Croce, V. Harnois, Lijun Zhang, Ye Li, A. Aristondo, Iñigo Mendikoa Alonso, S. Mancini, K. Boorsma, F. Savenije, D. Marten, R. Soto‐Valle, C. Schulz, S. Netzband, A. Bianchini, F. Papi, S. Cioni, P. Trubat, D. Alarcón, C. Molins, M. Cormier, Konstantin Brüker, T. Lutz, Qing Xiao, Z. Deng, F. Haudin, Akhilesh Goveas
{"title":"OC6项目第三阶段:风力发电机转子在浮式支撑结构引起的大运动下的气动载荷验证","authors":"R. Bergua, A. Robertson, J. Jonkman, E. Branlard, A. Fontanella, M. Belloli, P. Schito, A. Zasso, G. Persico, A. Sanvito, E. Amet, C. Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, A. Beardsell, G. Pirrung, N. Ramos‐García, W. Shi, J. Fu, Rémi Corniglion, A. Lovera, J. Galván, T. Nygaard, Carlos Renan dos Santos, P. Gilbert, Pierre-Antoine Joulin, F. Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, R. Boisard, Kutay Yilmazlar, A. Croce, V. Harnois, Lijun Zhang, Ye Li, A. Aristondo, Iñigo Mendikoa Alonso, S. Mancini, K. Boorsma, F. Savenije, D. Marten, R. Soto‐Valle, C. Schulz, S. Netzband, A. Bianchini, F. Papi, S. Cioni, P. Trubat, D. Alarcón, C. Molins, M. Cormier, Konstantin Brüker, T. Lutz, Qing Xiao, Z. Deng, F. Haudin, Akhilesh Goveas","doi":"10.5194/wes-8-465-2023","DOIUrl":null,"url":null,"abstract":"Abstract. This paper provides a summary of the work done within Phase III of the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) project, under the International Energy Agency Wind Technology Collaboration Programme Task 30. This phase focused on validating the aerodynamic loading on a wind turbine rotor undergoing large\nmotion caused by a floating support structure. Numerical models of the\nTechnical University of Denmark 10 MW reference wind turbine were validated using measurement data from a 1:75 scale test performed during the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project and a follow-on experimental campaign, both performed at the Politecnico di Milano wind tunnel. Validation of the models was performed by comparing the loads for steady (fixed platform) and unsteady (harmonic motion of the platform) wind conditions. For the unsteady wind conditions, the platform was forced to oscillate in the surge and pitch directions under several frequencies and amplitudes. These oscillations result in a wind variation that impacts the rotor loads (e.g., thrust and torque). For the conditions studied in these tests, the system aerodynamic response was almost steady. Only a small hysteresis in airfoil performance undergoing angle of attack variations in attached flow was observed. During the experiments, the rotor speed and blade pitch angle were held constant. However, in real wind turbine operating conditions, the surge and pitch variations would result in rotor speed variations and/or blade pitch actuations, depending on the wind turbine controller region that the system is operating. Additional\nsimulations with these control parameters were conducted to verify the\nfidelity of different models. Participant results showed, in general, a good\nagreement with the experimental measurements and the need to account for\ndynamic inflow when there are changes in the flow conditions due to the\nrotor speed variations or blade pitch actuations in response to surge and\npitch motion. Numerical models not accounting for dynamic inflow effects\npredicted rotor loads that were 9 % lower in amplitude during rotor speed\nvariations and 18 % higher in amplitude during blade pitch actuations.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure\",\"authors\":\"R. Bergua, A. Robertson, J. Jonkman, E. Branlard, A. Fontanella, M. Belloli, P. Schito, A. Zasso, G. Persico, A. Sanvito, E. Amet, C. Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, A. Beardsell, G. Pirrung, N. Ramos‐García, W. Shi, J. Fu, Rémi Corniglion, A. Lovera, J. Galván, T. Nygaard, Carlos Renan dos Santos, P. Gilbert, Pierre-Antoine Joulin, F. Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, R. Boisard, Kutay Yilmazlar, A. Croce, V. Harnois, Lijun Zhang, Ye Li, A. Aristondo, Iñigo Mendikoa Alonso, S. Mancini, K. Boorsma, F. Savenije, D. Marten, R. Soto‐Valle, C. Schulz, S. Netzband, A. Bianchini, F. Papi, S. Cioni, P. Trubat, D. Alarcón, C. Molins, M. Cormier, Konstantin Brüker, T. Lutz, Qing Xiao, Z. Deng, F. Haudin, Akhilesh Goveas\",\"doi\":\"10.5194/wes-8-465-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This paper provides a summary of the work done within Phase III of the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) project, under the International Energy Agency Wind Technology Collaboration Programme Task 30. This phase focused on validating the aerodynamic loading on a wind turbine rotor undergoing large\\nmotion caused by a floating support structure. Numerical models of the\\nTechnical University of Denmark 10 MW reference wind turbine were validated using measurement data from a 1:75 scale test performed during the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project and a follow-on experimental campaign, both performed at the Politecnico di Milano wind tunnel. Validation of the models was performed by comparing the loads for steady (fixed platform) and unsteady (harmonic motion of the platform) wind conditions. For the unsteady wind conditions, the platform was forced to oscillate in the surge and pitch directions under several frequencies and amplitudes. These oscillations result in a wind variation that impacts the rotor loads (e.g., thrust and torque). For the conditions studied in these tests, the system aerodynamic response was almost steady. Only a small hysteresis in airfoil performance undergoing angle of attack variations in attached flow was observed. During the experiments, the rotor speed and blade pitch angle were held constant. However, in real wind turbine operating conditions, the surge and pitch variations would result in rotor speed variations and/or blade pitch actuations, depending on the wind turbine controller region that the system is operating. Additional\\nsimulations with these control parameters were conducted to verify the\\nfidelity of different models. Participant results showed, in general, a good\\nagreement with the experimental measurements and the need to account for\\ndynamic inflow when there are changes in the flow conditions due to the\\nrotor speed variations or blade pitch actuations in response to surge and\\npitch motion. Numerical models not accounting for dynamic inflow effects\\npredicted rotor loads that were 9 % lower in amplitude during rotor speed\\nvariations and 18 % higher in amplitude during blade pitch actuations.\\n\",\"PeriodicalId\":46540,\"journal\":{\"name\":\"Wind Energy Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Energy Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/wes-8-465-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-465-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 11

摘要

摘要本文总结了在国际能源署风能技术合作计划任务30下,海上代码比较合作(续)第三阶段(OC6)项目中所做的工作。本阶段的重点是验证风力涡轮机转子上的空气动力学载荷,该转子正经历由浮动支撑结构引起的大运动。丹麦科技大学的数值模型10 MW参考风力涡轮机使用1:75比例测试的测量数据进行了验证,该测试是在“漂浮风的不稳定空气动力学”(UNAFLOW)项目和后续实验活动期间进行的,这两项活动都是在米兰理工大学风洞进行的。通过比较稳定(固定平台)和非稳定(平台的谐波运动)风条件下的载荷,对模型进行了验证。对于非定常风条件,平台被迫在几个频率和振幅下沿涌浪和俯仰方向振荡。这些振荡导致风的变化,从而影响转子负载(例如,推力和扭矩)。在这些试验中研究的条件下,系统的气动响应几乎是稳定的。在附流攻角变化的情况下,只观察到翼型性能的微小滞后。在实验过程中,转子速度和叶片桨距角保持不变。然而,在实际的风力涡轮机操作条件下,喘振和变桨变化将导致转子速度变化和/或叶片变桨致动,这取决于系统正在操作的风力涡轮机控制器区域。利用这些控制参数进行了额外的仿真,以验证不同模型的有效性。参与者的结果表明,总体而言,与实验测量结果一致,并且当由于转子速度变化或叶片桨距致动而导致流动条件发生变化时,需要考虑动态流入。未考虑动态流入效应的数值模型预测转子载荷为9 % 转子转速变化时振幅较低,18 % 在叶片变桨致动期间振幅更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure
Abstract. This paper provides a summary of the work done within Phase III of the Offshore Code Comparison Collaboration, Continued, with Correlation and unCertainty (OC6) project, under the International Energy Agency Wind Technology Collaboration Programme Task 30. This phase focused on validating the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure. Numerical models of the Technical University of Denmark 10 MW reference wind turbine were validated using measurement data from a 1:75 scale test performed during the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project and a follow-on experimental campaign, both performed at the Politecnico di Milano wind tunnel. Validation of the models was performed by comparing the loads for steady (fixed platform) and unsteady (harmonic motion of the platform) wind conditions. For the unsteady wind conditions, the platform was forced to oscillate in the surge and pitch directions under several frequencies and amplitudes. These oscillations result in a wind variation that impacts the rotor loads (e.g., thrust and torque). For the conditions studied in these tests, the system aerodynamic response was almost steady. Only a small hysteresis in airfoil performance undergoing angle of attack variations in attached flow was observed. During the experiments, the rotor speed and blade pitch angle were held constant. However, in real wind turbine operating conditions, the surge and pitch variations would result in rotor speed variations and/or blade pitch actuations, depending on the wind turbine controller region that the system is operating. Additional simulations with these control parameters were conducted to verify the fidelity of different models. Participant results showed, in general, a good agreement with the experimental measurements and the need to account for dynamic inflow when there are changes in the flow conditions due to the rotor speed variations or blade pitch actuations in response to surge and pitch motion. Numerical models not accounting for dynamic inflow effects predicted rotor loads that were 9 % lower in amplitude during rotor speed variations and 18 % higher in amplitude during blade pitch actuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信