线性核和多项式核支持向量机在twitter上进行多类情感分析的性能比较

Rifqatul Mukarramah, Dedy Atmajaya, Lutfi Budi Ilmawan
{"title":"线性核和多项式核支持向量机在twitter上进行多类情感分析的性能比较","authors":"Rifqatul Mukarramah, Dedy Atmajaya, Lutfi Budi Ilmawan","doi":"10.33096/ilkom.v13i2.851.168-174","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a technique to extract information of one’s perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify society’s response on covid-19 virus posted at twitter into 4 polars, namely happy, sad, angry, and scared. Classification technique used is support vector machine (SVM) method which compares the classification performance figure of 2 linear kernel functions, linear and polynomial. There were 400 tweet data used where each sentiment class consists of 100 data. Using the testing method of k-fold cross validation, the result shows the accuracy value of linear kernel function is 0.28 for unigram feature and 0.36 for trigram feature. These figures are lower compared to accuracy value of kernel polynomial with 0.34 and 0.48 for unigram and trigram feature respectively. On the other hand, testing method of confusion matrix suggests the highest performance is obtained by using kernel polynomial with accuracy value of 0.51, precision of 0.43, recall of 0.45, and f-measure of 0.51.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter\",\"authors\":\"Rifqatul Mukarramah, Dedy Atmajaya, Lutfi Budi Ilmawan\",\"doi\":\"10.33096/ilkom.v13i2.851.168-174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is a technique to extract information of one’s perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify society’s response on covid-19 virus posted at twitter into 4 polars, namely happy, sad, angry, and scared. Classification technique used is support vector machine (SVM) method which compares the classification performance figure of 2 linear kernel functions, linear and polynomial. There were 400 tweet data used where each sentiment class consists of 100 data. Using the testing method of k-fold cross validation, the result shows the accuracy value of linear kernel function is 0.28 for unigram feature and 0.36 for trigram feature. These figures are lower compared to accuracy value of kernel polynomial with 0.34 and 0.48 for unigram and trigram feature respectively. On the other hand, testing method of confusion matrix suggests the highest performance is obtained by using kernel polynomial with accuracy value of 0.51, precision of 0.43, recall of 0.45, and f-measure of 0.51.\",\"PeriodicalId\":33690,\"journal\":{\"name\":\"Ilkom Jurnal Ilmiah\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ilkom Jurnal Ilmiah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/ilkom.v13i2.851.168-174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v13i2.851.168-174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

情绪分析是一种提取一个人对某个问题或事件的感知信息的技术,称为情绪。本研究采用情绪分析法,将社会对推特上发布的新冠肺炎病毒的反应分为四个polar,即高兴、悲伤、愤怒和恐惧。所使用的分类技术是支持向量机(SVM)方法,该方法比较了线性和多项式两个线性核函数的分类性能图。使用了400条推特数据,其中每个情绪类由100条数据组成。使用k次交叉验证的测试方法,结果表明,线性核函数的精度值对于单图特征为0.28,对于三图特征为0.36。这些数字与核多项式的精度值相比更低,核多项式的单图和三图特征的精度值分别为0.34和0.48。另一方面,混淆矩阵的测试方法表明,使用精度值为0.51、精度为0.43、召回率为0.45、f测度为0.51的核多项式可以获得最高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter
Sentiment analysis is a technique to extract information of one’s perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify society’s response on covid-19 virus posted at twitter into 4 polars, namely happy, sad, angry, and scared. Classification technique used is support vector machine (SVM) method which compares the classification performance figure of 2 linear kernel functions, linear and polynomial. There were 400 tweet data used where each sentiment class consists of 100 data. Using the testing method of k-fold cross validation, the result shows the accuracy value of linear kernel function is 0.28 for unigram feature and 0.36 for trigram feature. These figures are lower compared to accuracy value of kernel polynomial with 0.34 and 0.48 for unigram and trigram feature respectively. On the other hand, testing method of confusion matrix suggests the highest performance is obtained by using kernel polynomial with accuracy value of 0.51, precision of 0.43, recall of 0.45, and f-measure of 0.51.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信