{"title":"函数域的Stickelberger级数和主要猜想","authors":"A. Bandini, E. Coscelli","doi":"10.5565/PUBLMAT6522103","DOIUrl":null,"url":null,"abstract":"Let F be a global function field of characteristic p with ring of integers A and let \\Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\\infty-extension F/F generated by the \\mathfrak{p}-power torsion of \\Phi (\\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stickelberger series and Main Conjecture for function fields\",\"authors\":\"A. Bandini, E. Coscelli\",\"doi\":\"10.5565/PUBLMAT6522103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F be a global function field of characteristic p with ring of integers A and let \\\\Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\\\\infty-extension F/F generated by the \\\\mathfrak{p}-power torsion of \\\\Phi (\\\\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/PUBLMAT6522103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6522103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stickelberger series and Main Conjecture for function fields
Let F be a global function field of characteristic p with ring of integers A and let \Phi be a Hayes module on the Hilbert class field H(A) of F. We prove an Iwasawa Main Conjecture for the Z_p^\infty-extension F/F generated by the \mathfrak{p}-power torsion of \Phi (\mathfrak{p} a prime of A). The main tool is a Stickelberger series whose specialization provides a generator for the Fitting ideal of the class group of F. Moreover we prove that the same series, evaluated at complex or p-adic characters, interpolates the Goss Zeta-function or some p-adic L-function, thus providing the link between the algebraic structure (class groups) and the analytic functions, which is the crucial part of Iwasawa Main Conjecture.