多项式的马勒测度迭代

Pub Date : 2023-01-12 DOI:10.4153/S0008439523000048
I. Pritsker
{"title":"多项式的马勒测度迭代","authors":"I. Pritsker","doi":"10.4153/S0008439523000048","DOIUrl":null,"url":null,"abstract":"Abstract Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial \n$f(z)=z^d+\\cdots \\in {\\mathbb C}[z],\\ \\deg (f)\\ge 2,$\n we show that the Mahler measure of the iterates \n$f^n$\n grows geometrically fast with the degree \n$d^n,$\n and find the exact base of that exponential growth. This base is expressed via an integral of \n$\\log ^+|z|$\n with respect to the invariant measure of the Julia set for the polynomial \n$f.$\n Moreover, we give sharp estimates for such an integral when the Julia set is connected.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mahler measure of polynomial iterates\",\"authors\":\"I. Pritsker\",\"doi\":\"10.4153/S0008439523000048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial \\n$f(z)=z^d+\\\\cdots \\\\in {\\\\mathbb C}[z],\\\\ \\\\deg (f)\\\\ge 2,$\\n we show that the Mahler measure of the iterates \\n$f^n$\\n grows geometrically fast with the degree \\n$d^n,$\\n and find the exact base of that exponential growth. This base is expressed via an integral of \\n$\\\\log ^+|z|$\\n with respect to the invariant measure of the Julia set for the polynomial \\n$f.$\\n Moreover, we give sharp estimates for such an integral when the Julia set is connected.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439523000048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Granville最近研究了马勒测度在多项式动力学下的表现。对于多项式$f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$,我们证明了迭代的马勒测度$f^n$随程度$d^n,$呈几何快速增长,并找到了该指数增长的确切基数。这个基是通过对多项式$f.$的Julia集合的不变测度$\log ^+|z|$的积分来表示的。此外,当Julia集合是连通的时,我们给出了这样一个积分的尖锐估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Mahler measure of polynomial iterates
Abstract Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial $f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$ we show that the Mahler measure of the iterates $f^n$ grows geometrically fast with the degree $d^n,$ and find the exact base of that exponential growth. This base is expressed via an integral of $\log ^+|z|$ with respect to the invariant measure of the Julia set for the polynomial $f.$ Moreover, we give sharp estimates for such an integral when the Julia set is connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信