{"title":"改性介孔HMS负载V/W氧化脱硫二苯并噻吩","authors":"Neda Jamali, N. Ramezani, M. Mousazadeh","doi":"10.22036/PCR.2021.276639.1898","DOIUrl":null,"url":null,"abstract":"Two V/W-HMS (hexagonal mesoporous silica) nanostructures were synthesized with various vanadium and tungsten loadings. And their catalytic activities were investigated in oxidative desulphurization of dibenzothiophene (DBT) in model diesel fuel. The catalysts were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and N_2 physical adsorption-desorption (BET/BJH) techniques. The best V/W-HMS catalyst exhibited high catalytic activity, capable of converting more than 95% of DBT in the model diesel fuel under the optimum reaction condition (0.05 gr 1:4 of catalyst, T=60°C, t=2h). After doping of vanadium with tungsten, it was found that bandgap of the catalyst was reduced and its catalytic performance was improved effectively. The catalytic activity remained unchanged even after 6 recycling processes. The reaction kinetics, mechanism, and bandgap energy of the catalysts were also investigated.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Mesoporous HMS Supported V/W for Oxidative Desulfurization of Dibenzothiophene\",\"authors\":\"Neda Jamali, N. Ramezani, M. Mousazadeh\",\"doi\":\"10.22036/PCR.2021.276639.1898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two V/W-HMS (hexagonal mesoporous silica) nanostructures were synthesized with various vanadium and tungsten loadings. And their catalytic activities were investigated in oxidative desulphurization of dibenzothiophene (DBT) in model diesel fuel. The catalysts were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and N_2 physical adsorption-desorption (BET/BJH) techniques. The best V/W-HMS catalyst exhibited high catalytic activity, capable of converting more than 95% of DBT in the model diesel fuel under the optimum reaction condition (0.05 gr 1:4 of catalyst, T=60°C, t=2h). After doping of vanadium with tungsten, it was found that bandgap of the catalyst was reduced and its catalytic performance was improved effectively. The catalytic activity remained unchanged even after 6 recycling processes. The reaction kinetics, mechanism, and bandgap energy of the catalysts were also investigated.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2021.276639.1898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2021.276639.1898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
以不同的钒和钨负载量合成了两种V/W-HMS(六方介孔二氧化硅)纳米结构。并考察了它们对模型柴油中二苯并噻吩(DBT)氧化脱硫的催化活性。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)和N2物理吸附-解吸(BET/BJH)技术对催化剂进行了表征。最佳的V/W-HMS催化剂表现出较高的催化活性,在最佳反应条件下(0.05 gr 1:4催化剂,T=60°C,T=2h),能够转化模型柴油中95%以上的DBT。用钨掺杂钒后,发现催化剂的带隙减小,有效地提高了催化剂的催化性能。即使经过6次循环处理,催化活性仍保持不变。研究了催化剂的反应动力学、反应机理和带隙能。
Modified Mesoporous HMS Supported V/W for Oxidative Desulfurization of Dibenzothiophene
Two V/W-HMS (hexagonal mesoporous silica) nanostructures were synthesized with various vanadium and tungsten loadings. And their catalytic activities were investigated in oxidative desulphurization of dibenzothiophene (DBT) in model diesel fuel. The catalysts were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and N_2 physical adsorption-desorption (BET/BJH) techniques. The best V/W-HMS catalyst exhibited high catalytic activity, capable of converting more than 95% of DBT in the model diesel fuel under the optimum reaction condition (0.05 gr 1:4 of catalyst, T=60°C, t=2h). After doping of vanadium with tungsten, it was found that bandgap of the catalyst was reduced and its catalytic performance was improved effectively. The catalytic activity remained unchanged even after 6 recycling processes. The reaction kinetics, mechanism, and bandgap energy of the catalysts were also investigated.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.