{"title":"一种嵌入微控制器的新型记忆蔡氏振荡器的生物医学图像加密","authors":"Gabin Jeatsa Kitio, Alain Djomo Fanda, Idriss Rochinel Kemlenack Feulefack, Justin Roger Mboupda Pone, Romanic Kengne, Alain Tiedeu","doi":"10.1007/s13538-023-01268-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a chaos-based encryption/decryption scheme using a novel memristive Chua oscillator to protect medical images is presented. The novel Chua oscillator is constructed by using the active voltage memristor in the nonlinear branch of the Chua oscillator. The chaotic dynamics behaviors are investigated using 1-D, 2-D bifurcation diagrams, time traces, basin of attractions, and largest Lyapunov exponent plot. The study reveals that the novel memristive Chua oscillator exhibits versatile transitions to chaos with interesting dynamics like multistability, spiking, and bursting oscillations just to name a few. These remarkable features are experimentally confirmed by a laboratory microcontroller-based setup. Thereafter, a chaos-based cryptography algorithm designed for biomedical images is built using pseudorandom number generated from the oscillator. The robustness and security tests undergone by the algorithm yielded high sensitivity on the encryption keys and resisted noise contamination as well as data loss. These results are encouraging and prove that the chaos-based cryptosystem built with the memristive Chua circuit–generated pseudorandom number is suitable for securing images in a healthcare system.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"53 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biomedical Image Encryption with a Novel Memristive Chua Oscillator Embedded in a Microcontroller\",\"authors\":\"Gabin Jeatsa Kitio, Alain Djomo Fanda, Idriss Rochinel Kemlenack Feulefack, Justin Roger Mboupda Pone, Romanic Kengne, Alain Tiedeu\",\"doi\":\"10.1007/s13538-023-01268-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a chaos-based encryption/decryption scheme using a novel memristive Chua oscillator to protect medical images is presented. The novel Chua oscillator is constructed by using the active voltage memristor in the nonlinear branch of the Chua oscillator. The chaotic dynamics behaviors are investigated using 1-D, 2-D bifurcation diagrams, time traces, basin of attractions, and largest Lyapunov exponent plot. The study reveals that the novel memristive Chua oscillator exhibits versatile transitions to chaos with interesting dynamics like multistability, spiking, and bursting oscillations just to name a few. These remarkable features are experimentally confirmed by a laboratory microcontroller-based setup. Thereafter, a chaos-based cryptography algorithm designed for biomedical images is built using pseudorandom number generated from the oscillator. The robustness and security tests undergone by the algorithm yielded high sensitivity on the encryption keys and resisted noise contamination as well as data loss. These results are encouraging and prove that the chaos-based cryptosystem built with the memristive Chua circuit–generated pseudorandom number is suitable for securing images in a healthcare system.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-023-01268-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-023-01268-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomedical Image Encryption with a Novel Memristive Chua Oscillator Embedded in a Microcontroller
In this paper, a chaos-based encryption/decryption scheme using a novel memristive Chua oscillator to protect medical images is presented. The novel Chua oscillator is constructed by using the active voltage memristor in the nonlinear branch of the Chua oscillator. The chaotic dynamics behaviors are investigated using 1-D, 2-D bifurcation diagrams, time traces, basin of attractions, and largest Lyapunov exponent plot. The study reveals that the novel memristive Chua oscillator exhibits versatile transitions to chaos with interesting dynamics like multistability, spiking, and bursting oscillations just to name a few. These remarkable features are experimentally confirmed by a laboratory microcontroller-based setup. Thereafter, a chaos-based cryptography algorithm designed for biomedical images is built using pseudorandom number generated from the oscillator. The robustness and security tests undergone by the algorithm yielded high sensitivity on the encryption keys and resisted noise contamination as well as data loss. These results are encouraging and prove that the chaos-based cryptosystem built with the memristive Chua circuit–generated pseudorandom number is suitable for securing images in a healthcare system.
期刊介绍:
The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.