革兰氏阴性和阳性细菌分泌体治疗巨噬细胞可诱导不同的代谢特征

Q3 Pharmacology, Toxicology and Pharmaceutics
Alaa Abuawad
{"title":"革兰氏阴性和阳性细菌分泌体治疗巨噬细胞可诱导不同的代谢特征","authors":"Alaa Abuawad","doi":"10.35516/jjps.v16i2.1508","DOIUrl":null,"url":null,"abstract":"Infectious diseases represent major health and economic challenges globally. Emergence of multiple drug-resistant bacteria in the community and hospital has become a worldwide concern that requires novel approaches for rapid diagnosis and treatment. Metabolomics approach is a powerful tool providing important chemical information about the cellular phenotype of living systems, and the changes in their metabolic pathways in response to various perturbations. Metabolomics has become an important tool to study host-pathogen interactions and to discover potential novel therapeutic targets. In this study, untargeted LC-MS metabolic profiling was applied to differentiate between the impact of the secretome of the Gram-positive S. aureus SH1000 and Gram-negative P. aeruginosa PAO1 bacterial pathogens on THP-1 macrophages. The results showed that S. aureus and P. aeruginosa secretome affected alanine, aspartate and glutamate metabolism; sphingolipid metabolism; glycine and serine metabolism; GL metabolism; and tryptophan metabolism with different trends in THP-1 macrophages. However, the impact of both bacterial secretome on arginine and proline metabolism was similar. These data could contribute to a better understanding of pathogenesis and resistance of these bacteria and could pave the way for developing new therapeutics that selectively targeting Gram-positive or Gram-negative bacteria.","PeriodicalId":14719,"journal":{"name":"Jordan Journal of Pharmaceutical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of Macrophages with Gram-Negative and -Positive Bacterial Secretomes Induce Distinct Metabolic Signatures\",\"authors\":\"Alaa Abuawad\",\"doi\":\"10.35516/jjps.v16i2.1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infectious diseases represent major health and economic challenges globally. Emergence of multiple drug-resistant bacteria in the community and hospital has become a worldwide concern that requires novel approaches for rapid diagnosis and treatment. Metabolomics approach is a powerful tool providing important chemical information about the cellular phenotype of living systems, and the changes in their metabolic pathways in response to various perturbations. Metabolomics has become an important tool to study host-pathogen interactions and to discover potential novel therapeutic targets. In this study, untargeted LC-MS metabolic profiling was applied to differentiate between the impact of the secretome of the Gram-positive S. aureus SH1000 and Gram-negative P. aeruginosa PAO1 bacterial pathogens on THP-1 macrophages. The results showed that S. aureus and P. aeruginosa secretome affected alanine, aspartate and glutamate metabolism; sphingolipid metabolism; glycine and serine metabolism; GL metabolism; and tryptophan metabolism with different trends in THP-1 macrophages. However, the impact of both bacterial secretome on arginine and proline metabolism was similar. These data could contribute to a better understanding of pathogenesis and resistance of these bacteria and could pave the way for developing new therapeutics that selectively targeting Gram-positive or Gram-negative bacteria.\",\"PeriodicalId\":14719,\"journal\":{\"name\":\"Jordan Journal of Pharmaceutical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35516/jjps.v16i2.1508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35516/jjps.v16i2.1508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

传染病是全球主要的健康和经济挑战。社区和医院中出现的多重耐药细菌已成为全世界关注的问题,需要采用新的方法进行快速诊断和治疗。代谢组学方法是一种强大的工具,提供了关于生命系统细胞表型的重要化学信息,以及它们的代谢途径在各种扰动下的变化。代谢组学已成为研究宿主-病原体相互作用和发现潜在新治疗靶点的重要工具。在本研究中,采用非靶向LC-MS代谢谱来区分革兰氏阳性金黄色葡萄球菌SH1000和革兰氏阴性铜绿假单胞菌PAO1细菌病原体分泌组对THP-1巨噬细胞的影响。结果表明,金黄色葡萄球菌和铜绿假单胞菌分泌组影响丙氨酸、天冬氨酸和谷氨酸代谢;鞘脂类代谢;甘氨酸和丝氨酸代谢;GL新陈代谢;THP-1巨噬细胞色氨酸代谢的变化趋势。然而,细菌分泌组对精氨酸和脯氨酸代谢的影响是相似的。这些数据有助于更好地了解这些细菌的发病机制和耐药性,并为开发选择性靶向革兰氏阳性或革兰氏阴性细菌的新疗法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treatment of Macrophages with Gram-Negative and -Positive Bacterial Secretomes Induce Distinct Metabolic Signatures
Infectious diseases represent major health and economic challenges globally. Emergence of multiple drug-resistant bacteria in the community and hospital has become a worldwide concern that requires novel approaches for rapid diagnosis and treatment. Metabolomics approach is a powerful tool providing important chemical information about the cellular phenotype of living systems, and the changes in their metabolic pathways in response to various perturbations. Metabolomics has become an important tool to study host-pathogen interactions and to discover potential novel therapeutic targets. In this study, untargeted LC-MS metabolic profiling was applied to differentiate between the impact of the secretome of the Gram-positive S. aureus SH1000 and Gram-negative P. aeruginosa PAO1 bacterial pathogens on THP-1 macrophages. The results showed that S. aureus and P. aeruginosa secretome affected alanine, aspartate and glutamate metabolism; sphingolipid metabolism; glycine and serine metabolism; GL metabolism; and tryptophan metabolism with different trends in THP-1 macrophages. However, the impact of both bacterial secretome on arginine and proline metabolism was similar. These data could contribute to a better understanding of pathogenesis and resistance of these bacteria and could pave the way for developing new therapeutics that selectively targeting Gram-positive or Gram-negative bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jordan Journal of Pharmaceutical Sciences
Jordan Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
1.70
自引率
0.00%
发文量
33
期刊介绍: The Jordan Journal of Pharmaceutical Sciences (JJPS) is a scientific, bi-annual, peer-reviewed publication that will focus on current topics of interest to the pharmaceutical community at large. Although the JJPS is intended to be of interest to pharmaceutical scientists, other healthy workers, and manufacturing processors will also find it most interesting and informative. Papers will cover basic pharmaceutical and applied research, scientific commentaries, as well as views, reviews. Topics on products will include manufacturing process, quality control, pharmaceutical engineering, pharmaceutical technology, and philosophies on all aspects of pharmaceutical sciences. The editorial advisory board would like to place an emphasis on new and innovative methods, technologies, and techniques for the pharmaceutical industry. The reader will find a broad range of important topics in this first issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信