{"title":"用亚高斯估计的并矢鞅迭代对数的单侧律","authors":"Santosh Ghimire","doi":"10.30538/psrp-oma2022.0099","DOIUrl":null,"url":null,"abstract":"The martingale analogue of Kolmogorov’s law of the iterated logarithm was obtained by W. Stout using probabilistic approach. In this paper, we give a new proof of one side of the same law of the iterated logarithm for dyadic martingale using subgaussian type estimates and Borel-Cantelli Lemma.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One-sided law of the iterated logarithm for dyadic martingale using sub-gaussian estimates\",\"authors\":\"Santosh Ghimire\",\"doi\":\"10.30538/psrp-oma2022.0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The martingale analogue of Kolmogorov’s law of the iterated logarithm was obtained by W. Stout using probabilistic approach. In this paper, we give a new proof of one side of the same law of the iterated logarithm for dyadic martingale using subgaussian type estimates and Borel-Cantelli Lemma.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2022.0099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2022.0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-sided law of the iterated logarithm for dyadic martingale using sub-gaussian estimates
The martingale analogue of Kolmogorov’s law of the iterated logarithm was obtained by W. Stout using probabilistic approach. In this paper, we give a new proof of one side of the same law of the iterated logarithm for dyadic martingale using subgaussian type estimates and Borel-Cantelli Lemma.