关于完全流形上能量的局部极小值的注记

Pub Date : 2022-12-10 DOI:10.12775/tmna.2022.013
M. Batista, José I. Santos
{"title":"关于完全流形上能量的局部极小值的注记","authors":"M. Batista, José I. Santos","doi":"10.12775/tmna.2022.013","DOIUrl":null,"url":null,"abstract":"In this paper, we study the geometric rigidity of complete Riemannian manifolds admitting local minimizers of energy functionals.\nMore precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be\na product manifold furnished with a warped metric.\nSecondly, under similar hypotheses, we deduce a geometrical splitting in\nthe same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on local minimizers of energy on complete manifolds\",\"authors\":\"M. Batista, José I. Santos\",\"doi\":\"10.12775/tmna.2022.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the geometric rigidity of complete Riemannian manifolds admitting local minimizers of energy functionals.\\nMore precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be\\na product manifold furnished with a warped metric.\\nSecondly, under similar hypotheses, we deduce a geometrical splitting in\\nthe same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了完全黎曼流形的几何刚度,它允许能量泛函的局部极小值。更准确地说,假设存在一个非平凡的局部极小子,并且在适当的假设下,所考虑的黎曼流形必须是一个具有翘曲度量的乘积流形。其次,在类似的假设下,我们以与Cheeger-Gromoll分裂定理相同的方式推导了几何分裂,并且我们还得到了关于局部极小值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on local minimizers of energy on complete manifolds
In this paper, we study the geometric rigidity of complete Riemannian manifolds admitting local minimizers of energy functionals. More precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be a product manifold furnished with a warped metric. Secondly, under similar hypotheses, we deduce a geometrical splitting in the same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信