非闭合场上的Clemens-Griffiths方法

IF 1.2 1区 数学 Q1 MATHEMATICS
Olivier Benoist, Olivier Benoist, Olivier Wittenberg, Olivier Wittenberg
{"title":"非闭合场上的Clemens-Griffiths方法","authors":"Olivier Benoist, Olivier Benoist, Olivier Wittenberg, Olivier Wittenberg","doi":"10.14231/AG-2020-025","DOIUrl":null,"url":null,"abstract":"We use the Clemens-Griffiths method to construct smooth projective threefolds, over any field $k$ admitting a separable quadratic extension, that are $k$-unirational and $\\bar{k}$-rational but not $k$-rational. When $k=\\mathbb{R}$, we can moreover ensure that their real locus is diffeomorphic to the real locus of a smooth projective $\\mathbb{R}$-rational variety and that all their unramified cohomology groups are trivial.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"The Clemens–Griffiths method over non-closed fields\",\"authors\":\"Olivier Benoist, Olivier Benoist, Olivier Wittenberg, Olivier Wittenberg\",\"doi\":\"10.14231/AG-2020-025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the Clemens-Griffiths method to construct smooth projective threefolds, over any field $k$ admitting a separable quadratic extension, that are $k$-unirational and $\\\\bar{k}$-rational but not $k$-rational. When $k=\\\\mathbb{R}$, we can moreover ensure that their real locus is diffeomorphic to the real locus of a smooth projective $\\\\mathbb{R}$-rational variety and that all their unramified cohomology groups are trivial.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2020-025\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2020-025","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

我们利用Clemens-Griffiths方法构造了在允许可分二次扩展的任意域$k$上,$k$-酉和$\bar{k}$-有理但不是$k$-有理的光滑投影三倍。当$k=\mathbb{R}$时,我们还可以保证它们的实轨迹与光滑射影$\mathbb{R}$的实轨迹是微分同态的,并且它们的所有未分枝上同调群都是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Clemens–Griffiths method over non-closed fields
We use the Clemens-Griffiths method to construct smooth projective threefolds, over any field $k$ admitting a separable quadratic extension, that are $k$-unirational and $\bar{k}$-rational but not $k$-rational. When $k=\mathbb{R}$, we can moreover ensure that their real locus is diffeomorphic to the real locus of a smooth projective $\mathbb{R}$-rational variety and that all their unramified cohomology groups are trivial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信