涉及p-双调和算子的非线性Navier问题的无穷多解

IF 0.5 Q3 MATHEMATICS
Cubo Pub Date : 2022-12-21 DOI:10.56754/0719-0646.2403.0501
F. Cammaroto
{"title":"涉及p-双调和算子的非线性Navier问题的无穷多解","authors":"F. Cammaroto","doi":"10.56754/0719-0646.2403.0501","DOIUrl":null,"url":null,"abstract":"In this paper we establish some results of existence of infinitely many solutions for an elliptic equation involving the p-biharmonic and the p-Laplacian operators coupled with Navier boundary conditions where the nonlinearities depend on two real parameters and do not satisfy any symmetric condition. The nature of the approach is variational and the main tool is an abstract result of Ricceri. The novelty in the application of this abstract tool is the use of a class of test functions which makes the assumptions on the data easier to verify.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infinitely many solutions for a nonlinear Navier problem involving the p-biharmonic operator\",\"authors\":\"F. Cammaroto\",\"doi\":\"10.56754/0719-0646.2403.0501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish some results of existence of infinitely many solutions for an elliptic equation involving the p-biharmonic and the p-Laplacian operators coupled with Navier boundary conditions where the nonlinearities depend on two real parameters and do not satisfy any symmetric condition. The nature of the approach is variational and the main tool is an abstract result of Ricceri. The novelty in the application of this abstract tool is the use of a class of test functions which makes the assumptions on the data easier to verify.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2403.0501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2403.0501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了一类非线性依赖于两个实参数且不满足任何对称条件的p-双调和算子和p-拉普拉斯算子与Navier边界条件耦合的椭圆型方程的无穷多解存在性的一些结果。该方法的本质是变分的,主要工具是里切里的抽象结果。这个抽象工具的新颖之处在于使用了一类测试函数,这使得对数据的假设更容易验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many solutions for a nonlinear Navier problem involving the p-biharmonic operator
In this paper we establish some results of existence of infinitely many solutions for an elliptic equation involving the p-biharmonic and the p-Laplacian operators coupled with Navier boundary conditions where the nonlinearities depend on two real parameters and do not satisfy any symmetric condition. The nature of the approach is variational and the main tool is an abstract result of Ricceri. The novelty in the application of this abstract tool is the use of a class of test functions which makes the assumptions on the data easier to verify.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信