Guanajibo粘土的化学和矿物学特性(上新世Kandiudults)

Q4 Agricultural and Biological Sciences
Bianca Pérez-Lizasuain, M. Munoz, J. O’Hallorans, W. I. Lugo
{"title":"Guanajibo粘土的化学和矿物学特性(上新世Kandiudults)","authors":"Bianca Pérez-Lizasuain, M. Munoz, J. O’Hallorans, W. I. Lugo","doi":"10.46429/jaupr.v106i1.21055","DOIUrl":null,"url":null,"abstract":"A profile of Guanajibo clay (Plinthic Kandiudults) was evaluated to determine the ironstone content in the horizons and its chemical, physical and mineralogical properties. The mineralogy was characterized by X-ray diffraction (XRD) and the iron and aluminum oxide content determined by selective dissolution, using citrate-bicarbonate dithionite (CBD) and ammonium oxalate (OX) extractions. Soil color and the color of ground ironstone were determined with Munsell color charts. Soil texture, pH, and effective cation exchange capacity (ECEC) were also evaluated. The highest content of ironstone per unit mass was found in the Ap horizon (4.6%), decreasing in the Bt (0.9%) and Btv1 (1.0%) horizons. An increase in ironstone content was observed in the Btv2 horizon (3.8%), which suggests that this horizon was formed from alluvial deposits containing ironstone. No ironstone was found in the Btv3 horizon. The texture of the Ap horizon was a sandy clay, and the other horizons had a clay texture. Clay content reached a maximum value of 92.8% in the Btv3. The ECEC was low for the whole profile, ranging from 2.37 cmolc/kg in the Ap horizon to 4.37 cmolc/kg in the Btv3 horizon. The low ECEC is indicative of mineralogy dominated by highly weathered clay minerals like kaolinite and iron and aluminum oxides. The XRD analysis confirmed the presence of kaolinite, goethite, quartz, hematite and gibbsite in the clay fraction (< 2 mm) of the soil. A small peak corresponding to 2:1 clay minerals, probably Al-hydroxy interlayer vermiculite or montmorillonite, was observed in clay samples from the Ap, Bt and Btv1 horizons. The major mineral components of the ironstone were goethite, kaolinite and quartz. The fine earth fraction (150 µm) of the Btv1 horizon had a 2.8% CBD extractable iron content and a ratio of OX/CBD less than 0.10, meeting the two requirements established by Soil Taxonomy to qualify as plinthic. The other horizons met the requirement of OX/CBD ratios of less than 0.10, but had less than 2.5% iron extractable by the CBD method. Soil management practices that prevent soil erosion must be implemented in this soil to ward off exposure of plinthite to the surface and its irreversible hardening to ironstone.","PeriodicalId":14937,"journal":{"name":"Journal of Agriculture of The University of Puerto Rico","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical and mineralogical properties of Guanajibo clay (Plinthic Kandiudults)\",\"authors\":\"Bianca Pérez-Lizasuain, M. Munoz, J. O’Hallorans, W. I. Lugo\",\"doi\":\"10.46429/jaupr.v106i1.21055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A profile of Guanajibo clay (Plinthic Kandiudults) was evaluated to determine the ironstone content in the horizons and its chemical, physical and mineralogical properties. The mineralogy was characterized by X-ray diffraction (XRD) and the iron and aluminum oxide content determined by selective dissolution, using citrate-bicarbonate dithionite (CBD) and ammonium oxalate (OX) extractions. Soil color and the color of ground ironstone were determined with Munsell color charts. Soil texture, pH, and effective cation exchange capacity (ECEC) were also evaluated. The highest content of ironstone per unit mass was found in the Ap horizon (4.6%), decreasing in the Bt (0.9%) and Btv1 (1.0%) horizons. An increase in ironstone content was observed in the Btv2 horizon (3.8%), which suggests that this horizon was formed from alluvial deposits containing ironstone. No ironstone was found in the Btv3 horizon. The texture of the Ap horizon was a sandy clay, and the other horizons had a clay texture. Clay content reached a maximum value of 92.8% in the Btv3. The ECEC was low for the whole profile, ranging from 2.37 cmolc/kg in the Ap horizon to 4.37 cmolc/kg in the Btv3 horizon. The low ECEC is indicative of mineralogy dominated by highly weathered clay minerals like kaolinite and iron and aluminum oxides. The XRD analysis confirmed the presence of kaolinite, goethite, quartz, hematite and gibbsite in the clay fraction (< 2 mm) of the soil. A small peak corresponding to 2:1 clay minerals, probably Al-hydroxy interlayer vermiculite or montmorillonite, was observed in clay samples from the Ap, Bt and Btv1 horizons. The major mineral components of the ironstone were goethite, kaolinite and quartz. The fine earth fraction (150 µm) of the Btv1 horizon had a 2.8% CBD extractable iron content and a ratio of OX/CBD less than 0.10, meeting the two requirements established by Soil Taxonomy to qualify as plinthic. The other horizons met the requirement of OX/CBD ratios of less than 0.10, but had less than 2.5% iron extractable by the CBD method. Soil management practices that prevent soil erosion must be implemented in this soil to ward off exposure of plinthite to the surface and its irreversible hardening to ironstone.\",\"PeriodicalId\":14937,\"journal\":{\"name\":\"Journal of Agriculture of The University of Puerto Rico\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture of The University of Puerto Rico\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46429/jaupr.v106i1.21055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture of The University of Puerto Rico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46429/jaupr.v106i1.21055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

对Guanajibo粘土(上新世Kandiudults)剖面进行了评估,以确定层位中的铁矿石含量及其化学、物理和矿物学性质。通过X射线衍射(XRD)对矿物学进行了表征,并使用柠檬酸盐-碳酸氢盐-连二亚硫酸钠(CBD)和草酸铵(OX)提取物通过选择性溶解测定了铁和氧化铝含量。用Munsell颜色图测定了土壤的颜色和磨石的颜色。还对土壤质地、pH值和有效阳离子交换容量(ECEC)进行了评估。单位质量铁矿石含量最高的是Ap层(4.6%),而Bt层(0.9%)和Btv1层(1.0%)含量则有所下降。在Btv2地层中观察到铁矿石含量增加(3.8%),这表明该地层是由含有铁矿石的冲积沉积物形成的。在Btv3地平线上没有发现铁石。Ap层的质地是砂质粘土,其他层的质地则是粘土。Btv3中的粘土含量达到了92.8%的最大值。整个剖面的ECEC较低,从Ap层的2.37 cmolc/kg到Btv3层的4.37 cmolc/kg不等。低ECEC表明矿物学以高度风化的粘土矿物为主,如高岭石、铁和氧化铝。XRD分析证实,在土壤的粘土部分(<2 mm)中存在高岭石、针铁矿、石英、赤铁矿和三水铝石。在Ap、Bt和Btv1层的粘土样品中观察到一个对应于2:1粘土矿物的小峰,可能是羟基层间蛭石或蒙脱石。铁矿的主要矿物成分为针铁矿、高岭石和石英。Btv1层的细土部分(150µm)具有2.8%的CBD可提取铁含量和小于0.10的OX/CBD比率,满足土壤分类法确定的两个要求,即符合柱状土的资格。其他层位满足OX/CBD比值小于0.10的要求,但通过CBD方法可提取的铁含量小于2.5%。必须在这种土壤中实施防止土壤侵蚀的土壤管理措施,以防止plinite暴露在表面,并防止其不可逆地硬化到铁石中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical and mineralogical properties of Guanajibo clay (Plinthic Kandiudults)
A profile of Guanajibo clay (Plinthic Kandiudults) was evaluated to determine the ironstone content in the horizons and its chemical, physical and mineralogical properties. The mineralogy was characterized by X-ray diffraction (XRD) and the iron and aluminum oxide content determined by selective dissolution, using citrate-bicarbonate dithionite (CBD) and ammonium oxalate (OX) extractions. Soil color and the color of ground ironstone were determined with Munsell color charts. Soil texture, pH, and effective cation exchange capacity (ECEC) were also evaluated. The highest content of ironstone per unit mass was found in the Ap horizon (4.6%), decreasing in the Bt (0.9%) and Btv1 (1.0%) horizons. An increase in ironstone content was observed in the Btv2 horizon (3.8%), which suggests that this horizon was formed from alluvial deposits containing ironstone. No ironstone was found in the Btv3 horizon. The texture of the Ap horizon was a sandy clay, and the other horizons had a clay texture. Clay content reached a maximum value of 92.8% in the Btv3. The ECEC was low for the whole profile, ranging from 2.37 cmolc/kg in the Ap horizon to 4.37 cmolc/kg in the Btv3 horizon. The low ECEC is indicative of mineralogy dominated by highly weathered clay minerals like kaolinite and iron and aluminum oxides. The XRD analysis confirmed the presence of kaolinite, goethite, quartz, hematite and gibbsite in the clay fraction (< 2 mm) of the soil. A small peak corresponding to 2:1 clay minerals, probably Al-hydroxy interlayer vermiculite or montmorillonite, was observed in clay samples from the Ap, Bt and Btv1 horizons. The major mineral components of the ironstone were goethite, kaolinite and quartz. The fine earth fraction (150 µm) of the Btv1 horizon had a 2.8% CBD extractable iron content and a ratio of OX/CBD less than 0.10, meeting the two requirements established by Soil Taxonomy to qualify as plinthic. The other horizons met the requirement of OX/CBD ratios of less than 0.10, but had less than 2.5% iron extractable by the CBD method. Soil management practices that prevent soil erosion must be implemented in this soil to ward off exposure of plinthite to the surface and its irreversible hardening to ironstone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
64
审稿时长
6 months
期刊介绍: The Journal of Agriculture of the University of Puerto Rico issued biannually by the Agricultural Experiment Station of the University of Puerto Rico, Mayagüez Campus, for the publication of articles and research notes by staff members or others, dealing with scientific agriculture in Puerto Rico and elsewhere in the Caribbean and Latin America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信