{"title":"分数容量的数量稳定性不等式","authors":"E. Cinti, R. Ognibene, B. Ruffini","doi":"10.3934/mine.2022044","DOIUrl":null,"url":null,"abstract":"The aim of this work is to show a non-sharp quantitative stability version of the fractional isocapacitary inequality. In particular, we provide a lower bound for the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide the asymptotic behaviour of the $ s $-fractional capacity when $ s $ goes to $ 1 $ and the stability of our estimate with respect to the parameter $ s $.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"47 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quantitative stability inequality for fractional capacities\",\"authors\":\"E. Cinti, R. Ognibene, B. Ruffini\",\"doi\":\"10.3934/mine.2022044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to show a non-sharp quantitative stability version of the fractional isocapacitary inequality. In particular, we provide a lower bound for the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide the asymptotic behaviour of the $ s $-fractional capacity when $ s $ goes to $ 1 $ and the stability of our estimate with respect to the parameter $ s $.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"47 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2022044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2022044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
摘要
这项工作的目的是显示分数等电容不等式的非尖锐定量稳定性版本。特别地,我们根据弗伦克尔不对称提供了等电容赤字的下界。此外,我们给出了$ s $-分数容量在$ s $趋于$ 1 $时的渐近性,以及我们的估计相对于参数$ s $的稳定性。
A quantitative stability inequality for fractional capacities
The aim of this work is to show a non-sharp quantitative stability version of the fractional isocapacitary inequality. In particular, we provide a lower bound for the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide the asymptotic behaviour of the $ s $-fractional capacity when $ s $ goes to $ 1 $ and the stability of our estimate with respect to the parameter $ s $.