C. K. Maiti, Sanghamitra Das, S. Dey, Tara Prasanna Dash
{"title":"用于低功耗数字电路的异质结隧道场效应管的电热评估","authors":"C. K. Maiti, Sanghamitra Das, S. Dey, Tara Prasanna Dash","doi":"10.1504/IJNP.2019.10020331","DOIUrl":null,"url":null,"abstract":"To overcome the fundamental limitations of conventional MOSFETs, tunnel field effect transistors (TFETs) with strained-SiGe channel (via heterogeneous integration) may be used and is demonstrated using TCAD simulations. We mainly focus on the design and implementation of silicon-germanium (SiGe)-based tunnel field effect transistor, aiming to reduce the device operation voltage down to below 0.5 V. Physics-based electro-thermal simulations are performed for evaluating the self-heating (temperature rise) in the devices. We present the results of the electro-thermal analysis supported by effective 2D and 3D device simulations. Performance improvement in drain current as high as 200% has been achieved.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":"143 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-thermal assessment of heterojunction tunnel-FET for low-power digital circuits\",\"authors\":\"C. K. Maiti, Sanghamitra Das, S. Dey, Tara Prasanna Dash\",\"doi\":\"10.1504/IJNP.2019.10020331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome the fundamental limitations of conventional MOSFETs, tunnel field effect transistors (TFETs) with strained-SiGe channel (via heterogeneous integration) may be used and is demonstrated using TCAD simulations. We mainly focus on the design and implementation of silicon-germanium (SiGe)-based tunnel field effect transistor, aiming to reduce the device operation voltage down to below 0.5 V. Physics-based electro-thermal simulations are performed for evaluating the self-heating (temperature rise) in the devices. We present the results of the electro-thermal analysis supported by effective 2D and 3D device simulations. Performance improvement in drain current as high as 200% has been achieved.\",\"PeriodicalId\":14016,\"journal\":{\"name\":\"International Journal of Nanoparticles\",\"volume\":\"143 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNP.2019.10020331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNP.2019.10020331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Electro-thermal assessment of heterojunction tunnel-FET for low-power digital circuits
To overcome the fundamental limitations of conventional MOSFETs, tunnel field effect transistors (TFETs) with strained-SiGe channel (via heterogeneous integration) may be used and is demonstrated using TCAD simulations. We mainly focus on the design and implementation of silicon-germanium (SiGe)-based tunnel field effect transistor, aiming to reduce the device operation voltage down to below 0.5 V. Physics-based electro-thermal simulations are performed for evaluating the self-heating (temperature rise) in the devices. We present the results of the electro-thermal analysis supported by effective 2D and 3D device simulations. Performance improvement in drain current as high as 200% has been achieved.