素数近环上β-导数的一个注记

Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas
{"title":"素数近环上β-导数的一个注记","authors":"Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas","doi":"10.26480/msmk.01.2021.20.23","DOIUrl":null,"url":null,"abstract":"In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":"47 62","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON β-DERIVATIONS IN PRIME NEAR RING\",\"authors\":\"Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas\",\"doi\":\"10.26480/msmk.01.2021.20.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M\",\"PeriodicalId\":32521,\"journal\":{\"name\":\"Matrix Science Mathematic\",\"volume\":\"47 62\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Science Mathematic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26480/msmk.01.2021.20.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.01.2021.20.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用β-导子的概念证明了素数近环的交换性。设M是素数近环。如果M上存在p,q∈M和双侧非零β-导数f,其中β:M→M是一个同态,满足以下条件:f([s,t])=s^p[β(s),β
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOTE ON β-DERIVATIONS IN PRIME NEAR RING
In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信