Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas
{"title":"素数近环上β-导数的一个注记","authors":"Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas","doi":"10.26480/msmk.01.2021.20.23","DOIUrl":null,"url":null,"abstract":"In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":"47 62","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON β-DERIVATIONS IN PRIME NEAR RING\",\"authors\":\"Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas\",\"doi\":\"10.26480/msmk.01.2021.20.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M\",\"PeriodicalId\":32521,\"journal\":{\"name\":\"Matrix Science Mathematic\",\"volume\":\"47 62\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Science Mathematic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26480/msmk.01.2021.20.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.01.2021.20.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M