{"title":"芬兰使用TFMC(运输车队管理控制)提高同步道路运输系统的能源效率","authors":"T. Palander, K. Kärhä","doi":"10.3390/EN12040670","DOIUrl":null,"url":null,"abstract":"Previous studies have suggested that the use of high-capacity transportation (HCT) can lead to low-carbon road-transportation in the forest industry. This study shows the impacts (in terms of energy efficiency) of a three-year adaptation process of transportation (2014–2016) towards HCT that took place in a synchronized transportation system (STS). The use of three transportation fleet-management control (TFMC) methods was analyzed in various road infrastructures. Energy-efficiency calculations were undertaken based on the HCT vehicles’ mass limits (64, 68 and 76 t). The use of 76 t vehicles increased energy efficiency by 13.4% and reduced CO2 emissions by 3.5% (to 49.6 g/tkm). In addition, the results show that the energy efficiency of the STS could be improved by a further 3.1%. In this respect, the proposed TFMC was used to adjust the STS towards vehicle-group transportation while meeting the road-class constraints of local wood supply chains. Forest-industry companies in Finland and abroad can use the tailored TFMC to optimize the STS in the near future and to achieve the energy-efficient STS and the regulations of the European Commission in wood-procurement logistics.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"233 ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/EN12040670","citationCount":"11","resultStr":"{\"title\":\"Improving Energy Efficiency in a Synchronized Road-Transportation System by Using a TFMC (Transportation Fleet-Management Control) in Finland\",\"authors\":\"T. Palander, K. Kärhä\",\"doi\":\"10.3390/EN12040670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have suggested that the use of high-capacity transportation (HCT) can lead to low-carbon road-transportation in the forest industry. This study shows the impacts (in terms of energy efficiency) of a three-year adaptation process of transportation (2014–2016) towards HCT that took place in a synchronized transportation system (STS). The use of three transportation fleet-management control (TFMC) methods was analyzed in various road infrastructures. Energy-efficiency calculations were undertaken based on the HCT vehicles’ mass limits (64, 68 and 76 t). The use of 76 t vehicles increased energy efficiency by 13.4% and reduced CO2 emissions by 3.5% (to 49.6 g/tkm). In addition, the results show that the energy efficiency of the STS could be improved by a further 3.1%. In this respect, the proposed TFMC was used to adjust the STS towards vehicle-group transportation while meeting the road-class constraints of local wood supply chains. Forest-industry companies in Finland and abroad can use the tailored TFMC to optimize the STS in the near future and to achieve the energy-efficient STS and the regulations of the European Commission in wood-procurement logistics.\",\"PeriodicalId\":29914,\"journal\":{\"name\":\"Advances in Energy Research\",\"volume\":\"233 \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/EN12040670\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/EN12040670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/EN12040670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Improving Energy Efficiency in a Synchronized Road-Transportation System by Using a TFMC (Transportation Fleet-Management Control) in Finland
Previous studies have suggested that the use of high-capacity transportation (HCT) can lead to low-carbon road-transportation in the forest industry. This study shows the impacts (in terms of energy efficiency) of a three-year adaptation process of transportation (2014–2016) towards HCT that took place in a synchronized transportation system (STS). The use of three transportation fleet-management control (TFMC) methods was analyzed in various road infrastructures. Energy-efficiency calculations were undertaken based on the HCT vehicles’ mass limits (64, 68 and 76 t). The use of 76 t vehicles increased energy efficiency by 13.4% and reduced CO2 emissions by 3.5% (to 49.6 g/tkm). In addition, the results show that the energy efficiency of the STS could be improved by a further 3.1%. In this respect, the proposed TFMC was used to adjust the STS towards vehicle-group transportation while meeting the road-class constraints of local wood supply chains. Forest-industry companies in Finland and abroad can use the tailored TFMC to optimize the STS in the near future and to achieve the energy-efficient STS and the regulations of the European Commission in wood-procurement logistics.