{"title":"基于Stoyan-Grabarnik统计量的时空点过程参数估计","authors":"Conor Kresin, Frederic Schoenberg","doi":"10.1007/s10463-023-00866-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel estimator for the parameters governing spatial–temporal point processes is proposed. Unlike the maximum likelihood estimator, the proposed estimator is fast and easy to compute, and does not require the computation or approximation of a computationally expensive integral. This parametric estimator is based on the Stoyan–Grabarnik (sum of inverse intensity) statistic and is shown to be consistent, under quite general conditions. Simulations are presented demonstrating the performance of the estimator.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"75 6","pages":"887 - 909"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric estimation of spatial–temporal point processes using the Stoyan–Grabarnik statistic\",\"authors\":\"Conor Kresin, Frederic Schoenberg\",\"doi\":\"10.1007/s10463-023-00866-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel estimator for the parameters governing spatial–temporal point processes is proposed. Unlike the maximum likelihood estimator, the proposed estimator is fast and easy to compute, and does not require the computation or approximation of a computationally expensive integral. This parametric estimator is based on the Stoyan–Grabarnik (sum of inverse intensity) statistic and is shown to be consistent, under quite general conditions. Simulations are presented demonstrating the performance of the estimator.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":\"75 6\",\"pages\":\"887 - 909\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-023-00866-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00866-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Parametric estimation of spatial–temporal point processes using the Stoyan–Grabarnik statistic
A novel estimator for the parameters governing spatial–temporal point processes is proposed. Unlike the maximum likelihood estimator, the proposed estimator is fast and easy to compute, and does not require the computation or approximation of a computationally expensive integral. This parametric estimator is based on the Stoyan–Grabarnik (sum of inverse intensity) statistic and is shown to be consistent, under quite general conditions. Simulations are presented demonstrating the performance of the estimator.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.