Sk Jahir Abbas, Sabina Yesmin, Fangfang Xia, Sk Imran Ali, Zeyu Xiao, Weihong Tan
{"title":"基于烯丙基溴支架小分子的寡核苷酸纳米组装体","authors":"Sk Jahir Abbas, Sabina Yesmin, Fangfang Xia, Sk Imran Ali, Zeyu Xiao, Weihong Tan","doi":"10.1186/s11671-023-03846-0","DOIUrl":null,"url":null,"abstract":"<div><p>The development of oligonucleotide nanoassemblies with small molecules has shown great potential in bio-medical applications. However, the interaction of negatively charged oligonucleotides with halogenated small molecules represents a scientific challenge. Here, we introduced a distinct allyl bromide halogenated scaffold, which exhibits specific interaction with adenine nucleic bases of the oligonucleotides, thus leading to the formation of self-assembled nanostructures.\n</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03846-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Oligonucleotide nanoassemblies with allyl bromide scaffold-based small molecules\",\"authors\":\"Sk Jahir Abbas, Sabina Yesmin, Fangfang Xia, Sk Imran Ali, Zeyu Xiao, Weihong Tan\",\"doi\":\"10.1186/s11671-023-03846-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of oligonucleotide nanoassemblies with small molecules has shown great potential in bio-medical applications. However, the interaction of negatively charged oligonucleotides with halogenated small molecules represents a scientific challenge. Here, we introduced a distinct allyl bromide halogenated scaffold, which exhibits specific interaction with adenine nucleic bases of the oligonucleotides, thus leading to the formation of self-assembled nanostructures.\\n</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-023-03846-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-023-03846-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03846-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oligonucleotide nanoassemblies with allyl bromide scaffold-based small molecules
The development of oligonucleotide nanoassemblies with small molecules has shown great potential in bio-medical applications. However, the interaction of negatively charged oligonucleotides with halogenated small molecules represents a scientific challenge. Here, we introduced a distinct allyl bromide halogenated scaffold, which exhibits specific interaction with adenine nucleic bases of the oligonucleotides, thus leading to the formation of self-assembled nanostructures.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.