{"title":"基于正弦映射和高斯突变改进蛾焰优化算法的微电网优化调度","authors":"Yu Zhang, Peng Wang, Hongwan Yang, Qi Cui","doi":"10.1080/21642583.2022.2042424","DOIUrl":null,"url":null,"abstract":"Because the traditional power generation method has caused certain damage to the environment, the microgrid system composed of renewable energy has been widely developed and applied. This paper studies distributed power sources including photovoltaics, wind turbines, energy storage systems, gas turbines, and fuel cells. Under the conditions of microgrid islands and grid-connected operation, the fuel cost, operation and maintenance cost, and the electricity transaction cost between the microgrid and the distribution network, establish the optimal objective function for the operating cost of the microgrid. At the same time, due to the standard moth-flame optimization algorithm having low optimization accuracy and are easy to fall into local optimal solution, an improved moth-flame optimization algorithm based on Sine mapping and Gaussian mutation is proposed. This algorithm is used to obtain the output of each distributed power source and total operating cost in a dispatch period. Finally, an example is used to verify the effectiveness and economy of the proposed model and the improved algorithm.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"2021 11","pages":"115 - 125"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimal dispatching of microgrid based on improved moth-flame optimization algorithm based on sine mapping and Gaussian mutation\",\"authors\":\"Yu Zhang, Peng Wang, Hongwan Yang, Qi Cui\",\"doi\":\"10.1080/21642583.2022.2042424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because the traditional power generation method has caused certain damage to the environment, the microgrid system composed of renewable energy has been widely developed and applied. This paper studies distributed power sources including photovoltaics, wind turbines, energy storage systems, gas turbines, and fuel cells. Under the conditions of microgrid islands and grid-connected operation, the fuel cost, operation and maintenance cost, and the electricity transaction cost between the microgrid and the distribution network, establish the optimal objective function for the operating cost of the microgrid. At the same time, due to the standard moth-flame optimization algorithm having low optimization accuracy and are easy to fall into local optimal solution, an improved moth-flame optimization algorithm based on Sine mapping and Gaussian mutation is proposed. This algorithm is used to obtain the output of each distributed power source and total operating cost in a dispatch period. Finally, an example is used to verify the effectiveness and economy of the proposed model and the improved algorithm.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":\"2021 11\",\"pages\":\"115 - 125\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2022.2042424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2042424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Optimal dispatching of microgrid based on improved moth-flame optimization algorithm based on sine mapping and Gaussian mutation
Because the traditional power generation method has caused certain damage to the environment, the microgrid system composed of renewable energy has been widely developed and applied. This paper studies distributed power sources including photovoltaics, wind turbines, energy storage systems, gas turbines, and fuel cells. Under the conditions of microgrid islands and grid-connected operation, the fuel cost, operation and maintenance cost, and the electricity transaction cost between the microgrid and the distribution network, establish the optimal objective function for the operating cost of the microgrid. At the same time, due to the standard moth-flame optimization algorithm having low optimization accuracy and are easy to fall into local optimal solution, an improved moth-flame optimization algorithm based on Sine mapping and Gaussian mutation is proposed. This algorithm is used to obtain the output of each distributed power source and total operating cost in a dispatch period. Finally, an example is used to verify the effectiveness and economy of the proposed model and the improved algorithm.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory