Okadaic acid不改变番茄幼苗硝酸还原酶的激活状态

IF 0.8 4区 生物学 Q4 PLANT SCIENCES
A. Kołton, V. Vaštakaitė-Kairienė
{"title":"Okadaic acid不改变番茄幼苗硝酸还原酶的激活状态","authors":"A. Kołton, V. Vaštakaitė-Kairienė","doi":"10.32615/bp.2022.021","DOIUrl":null,"url":null,"abstract":"In this study, the total and actual nitrate reductase (NR) activity, and NR activation state, in tomato seedlings ( Solanum lycopersicum cvs. Kmicic and Faworyt) treated with okadaic acid (OA) was evaluated. Seedlings were grown in a half-strength Murashige and Skoog (MS) medium in a growth chamber at day/night temperatures of 22/20 °C, a photon flux density of 150 µmol m -2 s -1 , and a 16-h photoperiod. After 10 days, plants were transferred into MS medium with 0 (control), 0.01, 0.05, 0.1, 0.5, 1.0 µM OA. It was found that the total and actual NR activity increased in Kmicic leaves treated with 0.1, 0.5, and 1.0 µM OA compared to control. However, the NR activation state did not change in both roots and leaves of OA-treated tomato seedlings.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"77 8","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Okadaic acid did not change the nitrate reductase activation state in tomato seedlings\",\"authors\":\"A. Kołton, V. Vaštakaitė-Kairienė\",\"doi\":\"10.32615/bp.2022.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the total and actual nitrate reductase (NR) activity, and NR activation state, in tomato seedlings ( Solanum lycopersicum cvs. Kmicic and Faworyt) treated with okadaic acid (OA) was evaluated. Seedlings were grown in a half-strength Murashige and Skoog (MS) medium in a growth chamber at day/night temperatures of 22/20 °C, a photon flux density of 150 µmol m -2 s -1 , and a 16-h photoperiod. After 10 days, plants were transferred into MS medium with 0 (control), 0.01, 0.05, 0.1, 0.5, 1.0 µM OA. It was found that the total and actual NR activity increased in Kmicic leaves treated with 0.1, 0.5, and 1.0 µM OA compared to control. However, the NR activation state did not change in both roots and leaves of OA-treated tomato seedlings.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\"77 8\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/bp.2022.021\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2022.021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,评估了用okadaic酸(OA)处理的番茄幼苗(Solanum lycopersicum cvs.Kmicic和Faworyt)的总和实际硝酸还原酶(NR)活性以及NR激活状态。幼苗在生长室中的半强度Murashige和Skoog(MS)培养基中生长,昼夜温度为22/20°C,光子通量密度为150µmol m-2 s-1,光周期为16小时。10天后,将植物转移到含有0(对照)、0.01、0.05、0.1、0.5、1.0µM OA的MS培养基中。研究发现,与对照相比,用0.1、0.5和1.0µM OA处理的Kmic叶片的总NR活性和实际NR活性增加。然而,OA处理的番茄幼苗的根和叶的NR激活状态都没有改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Okadaic acid did not change the nitrate reductase activation state in tomato seedlings
In this study, the total and actual nitrate reductase (NR) activity, and NR activation state, in tomato seedlings ( Solanum lycopersicum cvs. Kmicic and Faworyt) treated with okadaic acid (OA) was evaluated. Seedlings were grown in a half-strength Murashige and Skoog (MS) medium in a growth chamber at day/night temperatures of 22/20 °C, a photon flux density of 150 µmol m -2 s -1 , and a 16-h photoperiod. After 10 days, plants were transferred into MS medium with 0 (control), 0.01, 0.05, 0.1, 0.5, 1.0 µM OA. It was found that the total and actual NR activity increased in Kmicic leaves treated with 0.1, 0.5, and 1.0 µM OA compared to control. However, the NR activation state did not change in both roots and leaves of OA-treated tomato seedlings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信