Minoru Tanaka, T. Akamatsu, R. Sinclair, M. Yamaguchi
{"title":"具有简单切割轨迹结构的一种新的纬向波纹双转球族","authors":"Minoru Tanaka, T. Akamatsu, R. Sinclair, M. Yamaguchi","doi":"10.3836/tjm/1502179366","DOIUrl":null,"url":null,"abstract":"There are not so many kinds of surface of revolution whose cut locus structure have been determined, although the cut locus structures of very familiar surfaces of revolution (in Euclidean space) such as ellipsoids, 2-sheeted hyperboloids, paraboloids and tori are now known. Except for tori, the known cut locus structures are very simple, i.e., a single point or an arc. In this article, a new family {Mn}n of 2-spheres of revolution with simple cut locus structure is introduced. This family is also new in the sense that the number of points on each meridian which assume a local minimum or maximum of the Gaussian curvature function on the meridian goes to infinity as n tends to infinity. Thus, our family includes surfaces which have arbitrarily many bands of alternately increasing or decreasing Gaussian curvature, although each member of this family has a simple cut locus structure.","PeriodicalId":48976,"journal":{"name":"Tokyo Journal of Mathematics","volume":"32 1-2","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Family of Latitudinally Corrugated Two-spheres of Revolution with Simple Cut Locus Structure\",\"authors\":\"Minoru Tanaka, T. Akamatsu, R. Sinclair, M. Yamaguchi\",\"doi\":\"10.3836/tjm/1502179366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are not so many kinds of surface of revolution whose cut locus structure have been determined, although the cut locus structures of very familiar surfaces of revolution (in Euclidean space) such as ellipsoids, 2-sheeted hyperboloids, paraboloids and tori are now known. Except for tori, the known cut locus structures are very simple, i.e., a single point or an arc. In this article, a new family {Mn}n of 2-spheres of revolution with simple cut locus structure is introduced. This family is also new in the sense that the number of points on each meridian which assume a local minimum or maximum of the Gaussian curvature function on the meridian goes to infinity as n tends to infinity. Thus, our family includes surfaces which have arbitrarily many bands of alternately increasing or decreasing Gaussian curvature, although each member of this family has a simple cut locus structure.\",\"PeriodicalId\":48976,\"journal\":{\"name\":\"Tokyo Journal of Mathematics\",\"volume\":\"32 1-2\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tokyo Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179366\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tokyo Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179366","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A New Family of Latitudinally Corrugated Two-spheres of Revolution with Simple Cut Locus Structure
There are not so many kinds of surface of revolution whose cut locus structure have been determined, although the cut locus structures of very familiar surfaces of revolution (in Euclidean space) such as ellipsoids, 2-sheeted hyperboloids, paraboloids and tori are now known. Except for tori, the known cut locus structures are very simple, i.e., a single point or an arc. In this article, a new family {Mn}n of 2-spheres of revolution with simple cut locus structure is introduced. This family is also new in the sense that the number of points on each meridian which assume a local minimum or maximum of the Gaussian curvature function on the meridian goes to infinity as n tends to infinity. Thus, our family includes surfaces which have arbitrarily many bands of alternately increasing or decreasing Gaussian curvature, although each member of this family has a simple cut locus structure.
期刊介绍:
The Tokyo Journal of Mathematics was founded in 1978 with the financial support of six institutions in the Tokyo area: Gakushuin University, Keio University, Sophia University, Tokyo Metropolitan University, Tsuda College, and Waseda University. In 2000 Chuo University and Meiji University, in 2005 Tokai University, and in 2013 Tokyo University of Science, joined as supporting institutions.