O. Mankovska, A. Korsakova, K. Cherniavskyi, O. Kononenko, E. O. Stakhovskyy, Y. Bondarenko, V. Kashuba, G. Gerashchenko
{"title":"肿瘤抑制基因启动子甲基化模式作为前列腺癌推定的无创诊断标记","authors":"O. Mankovska, A. Korsakova, K. Cherniavskyi, O. Kononenko, E. O. Stakhovskyy, Y. Bondarenko, V. Kashuba, G. Gerashchenko","doi":"10.7124/BC.000A49","DOIUrl":null,"url":null,"abstract":"Aim. To assess the rate of promoter methylation of putative TSGs for PCa in tumor tissue and in urine of PCa patients for better understanding of regulation of gene expression upon the PCa development and to evaluate the possibility to use the data on TSGs’ methylation for the development of noninvasive PCa markers. Methods. A quantitative methyl-specific PCR (qMSP) was used for the analysis of a methylation rate in prostate tissues and cell lines, and an ordinary MSP was performed for the study of urine samples. Results. We found that the RASSF1A promoter demonstrated a higher methylation rate in the TMPRSS2:ERG fusion positive PCa. The methylation of NKX3.1, PTEN and RASSF1A in DNA from urine was more common for cancer patients than for healthy donors. The promoters of CDH1 and GDF15 were methylated more frequently in PCa patients, than in patients with inflammatory disease. Conclusions. The abovementioned five genes can form a panel for early non-invasive detection of PCa. This set can be combined with the detection of the TMPRSS2:ERG fusion transcript. More work should be done to understand the molecular mechanisms explaining the functional role of promoter methylation of the selected genes.","PeriodicalId":39444,"journal":{"name":"Biopolymers and Cell","volume":"48 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methylation pattern of tumor-suppressor gene promoters as putative noninvasive diagnostic markers for prostate cancer\",\"authors\":\"O. Mankovska, A. Korsakova, K. Cherniavskyi, O. Kononenko, E. O. Stakhovskyy, Y. Bondarenko, V. Kashuba, G. Gerashchenko\",\"doi\":\"10.7124/BC.000A49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim. To assess the rate of promoter methylation of putative TSGs for PCa in tumor tissue and in urine of PCa patients for better understanding of regulation of gene expression upon the PCa development and to evaluate the possibility to use the data on TSGs’ methylation for the development of noninvasive PCa markers. Methods. A quantitative methyl-specific PCR (qMSP) was used for the analysis of a methylation rate in prostate tissues and cell lines, and an ordinary MSP was performed for the study of urine samples. Results. We found that the RASSF1A promoter demonstrated a higher methylation rate in the TMPRSS2:ERG fusion positive PCa. The methylation of NKX3.1, PTEN and RASSF1A in DNA from urine was more common for cancer patients than for healthy donors. The promoters of CDH1 and GDF15 were methylated more frequently in PCa patients, than in patients with inflammatory disease. Conclusions. The abovementioned five genes can form a panel for early non-invasive detection of PCa. This set can be combined with the detection of the TMPRSS2:ERG fusion transcript. More work should be done to understand the molecular mechanisms explaining the functional role of promoter methylation of the selected genes.\",\"PeriodicalId\":39444,\"journal\":{\"name\":\"Biopolymers and Cell\",\"volume\":\"48 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers and Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7124/BC.000A49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers and Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7124/BC.000A49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Methylation pattern of tumor-suppressor gene promoters as putative noninvasive diagnostic markers for prostate cancer
Aim. To assess the rate of promoter methylation of putative TSGs for PCa in tumor tissue and in urine of PCa patients for better understanding of regulation of gene expression upon the PCa development and to evaluate the possibility to use the data on TSGs’ methylation for the development of noninvasive PCa markers. Methods. A quantitative methyl-specific PCR (qMSP) was used for the analysis of a methylation rate in prostate tissues and cell lines, and an ordinary MSP was performed for the study of urine samples. Results. We found that the RASSF1A promoter demonstrated a higher methylation rate in the TMPRSS2:ERG fusion positive PCa. The methylation of NKX3.1, PTEN and RASSF1A in DNA from urine was more common for cancer patients than for healthy donors. The promoters of CDH1 and GDF15 were methylated more frequently in PCa patients, than in patients with inflammatory disease. Conclusions. The abovementioned five genes can form a panel for early non-invasive detection of PCa. This set can be combined with the detection of the TMPRSS2:ERG fusion transcript. More work should be done to understand the molecular mechanisms explaining the functional role of promoter methylation of the selected genes.
Biopolymers and CellBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.10
自引率
0.00%
发文量
9
期刊介绍:
“Biopolymer and cell” is published since 1985 at the Institute of Molecular Biology and Genetics NAS of Ukraine under the supervision of the National Academy of Sciences of Ukraine. Our journal covers a wide scope of problems related to molecular biology and genetics including structural and functional genomics, transcriptomics, proteomics, bioinformatics, biomedicine, molecular enzymology, molecular virology and immunology, theoretical bases of biotechnology, physics and physical chemistry of proteins and nucleic acids and bioorganic chemistry.