带和带多层LCP膜带方向滤波器的频分复用器

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mengfa Wang, Baoqing Zhang, Zhaolin Li, Yiming Wang, Qinglei Guo, Weihong Liu, Y. Yashchyshyn, Aimin Song, Yifei Zhang
{"title":"带和带多层LCP膜带方向滤波器的频分复用器","authors":"Mengfa Wang, Baoqing Zhang, Zhaolin Li, Yiming Wang, Qinglei Guo, Weihong Liu, Y. Yashchyshyn, Aimin Song, Yifei Zhang","doi":"10.1109/LMWC.2022.3177606","DOIUrl":null,"url":null,"abstract":"A quasi-reflectionless frequency division multiplexer (FDM) with directional filters (DFs) in multilayer liquid crystal polymer (LCP) substrates is proposed for <inline-formula> <tex-math notation=\"LaTeX\">$E$ </tex-math></inline-formula>- and <inline-formula> <tex-math notation=\"LaTeX\">$W$ </tex-math></inline-formula>-band applications. The in-series cascaded DFs are designed at 74, 84, and 94 GHz, each of which comprises two microstrip lines in the first layer, two pairs of coupling slots in the second layer, and loop resonators in the third layer. The distance between DFs is optimized for suppressing reflection and insertion losses, and the asymmetric distribution of DFs is designed to obtain a low profile. The experimental data demonstrate a 3-dB passband of 8.3%, 8.8%, and 9.7% centered at 74, 84, and 94 GHz, respectively, for the proposed FDM, showing a good match with the simulation. The corresponding insertion loss is measured as 3.63, 3.4, and 2.72 dB at 74, 84, and 94 GHz, respectively. The proposed device may find many applications in multiband and ultrawideband communication and radar systems.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"21 2","pages":"1287-1290"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Division Multiplexer With Directional Filters in Multilayer LCP Films at - and -Band\",\"authors\":\"Mengfa Wang, Baoqing Zhang, Zhaolin Li, Yiming Wang, Qinglei Guo, Weihong Liu, Y. Yashchyshyn, Aimin Song, Yifei Zhang\",\"doi\":\"10.1109/LMWC.2022.3177606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quasi-reflectionless frequency division multiplexer (FDM) with directional filters (DFs) in multilayer liquid crystal polymer (LCP) substrates is proposed for <inline-formula> <tex-math notation=\\\"LaTeX\\\">$E$ </tex-math></inline-formula>- and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$W$ </tex-math></inline-formula>-band applications. The in-series cascaded DFs are designed at 74, 84, and 94 GHz, each of which comprises two microstrip lines in the first layer, two pairs of coupling slots in the second layer, and loop resonators in the third layer. The distance between DFs is optimized for suppressing reflection and insertion losses, and the asymmetric distribution of DFs is designed to obtain a low profile. The experimental data demonstrate a 3-dB passband of 8.3%, 8.8%, and 9.7% centered at 74, 84, and 94 GHz, respectively, for the proposed FDM, showing a good match with the simulation. The corresponding insertion loss is measured as 3.63, 3.4, and 2.72 dB at 74, 84, and 94 GHz, respectively. The proposed device may find many applications in multiband and ultrawideband communication and radar systems.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"21 2\",\"pages\":\"1287-1290\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3177606\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3177606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种在多层液晶聚合物(LCP)衬底上具有定向滤波器的准无反射频分复用器(FDM),用于$E$和$W$波段。串联级联df设计在74,84和94 GHz,每个df由第一层的两条微带线,第二层的两对耦合槽和第三层的环路谐振器组成。优化了df之间的距离以抑制反射和插入损耗,设计了df的不对称分布以获得低轮廓。实验数据表明,所提出的FDM在74 GHz、84 GHz和94 GHz的通频带分别为8.3%、8.8%和9.7%,与仿真结果吻合较好。相应的插入损耗在74、84和94 GHz时分别为3.63、3.4和2.72 dB。该器件在多波段、超宽带通信和雷达系统中具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Division Multiplexer With Directional Filters in Multilayer LCP Films at - and -Band
A quasi-reflectionless frequency division multiplexer (FDM) with directional filters (DFs) in multilayer liquid crystal polymer (LCP) substrates is proposed for $E$ - and $W$ -band applications. The in-series cascaded DFs are designed at 74, 84, and 94 GHz, each of which comprises two microstrip lines in the first layer, two pairs of coupling slots in the second layer, and loop resonators in the third layer. The distance between DFs is optimized for suppressing reflection and insertion losses, and the asymmetric distribution of DFs is designed to obtain a low profile. The experimental data demonstrate a 3-dB passband of 8.3%, 8.8%, and 9.7% centered at 74, 84, and 94 GHz, respectively, for the proposed FDM, showing a good match with the simulation. The corresponding insertion loss is measured as 3.63, 3.4, and 2.72 dB at 74, 84, and 94 GHz, respectively. The proposed device may find many applications in multiband and ultrawideband communication and radar systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信