屋顶围护结构与残余多次谐波函数

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Rashkovskii
{"title":"屋顶围护结构与残余多次谐波函数","authors":"A. Rashkovskii","doi":"10.4064/ap210624-12-11","DOIUrl":null,"url":null,"abstract":"Given a negative plurisubharmonic function φ in a bounded pseudoconvex domain of C, we introduce and study its residual function gφ determined by the asymptotic behavior of φ near its singularity points, both inside the domain and on its boundary. For certain choices of φ, the function gφ coincides with different versions of pluricomplex Green functions. The considerations are motivated by a problem on when two given plurisubharmonic functions can be connected by a plurisubharmonic geodesic. Mathematic Subject Classification: 32U05, 32U15, 32U35, 32W20","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"23 5","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rooftop envelopes and residual plurisubharmonic functions\",\"authors\":\"A. Rashkovskii\",\"doi\":\"10.4064/ap210624-12-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a negative plurisubharmonic function φ in a bounded pseudoconvex domain of C, we introduce and study its residual function gφ determined by the asymptotic behavior of φ near its singularity points, both inside the domain and on its boundary. For certain choices of φ, the function gφ coincides with different versions of pluricomplex Green functions. The considerations are motivated by a problem on when two given plurisubharmonic functions can be connected by a plurisubharmonic geodesic. Mathematic Subject Classification: 32U05, 32U15, 32U35, 32W20\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap210624-12-11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap210624-12-11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

给定C的有界伪凸域上的负多次调和函数φ,引入并研究了它的残差函数gφ,该残差函数由φ在域内及其边界上的奇异点附近的渐近性质决定。对于φ的某些选择,函数gφ与不同版本的复数格林函数重合。两个给定的多次谐波函数何时可以通过多次谐波测地线连接的问题激发了我们的考虑。数学学科分类:32U05、32U15、32U35、32W20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rooftop envelopes and residual plurisubharmonic functions
Given a negative plurisubharmonic function φ in a bounded pseudoconvex domain of C, we introduce and study its residual function gφ determined by the asymptotic behavior of φ near its singularity points, both inside the domain and on its boundary. For certain choices of φ, the function gφ coincides with different versions of pluricomplex Green functions. The considerations are motivated by a problem on when two given plurisubharmonic functions can be connected by a plurisubharmonic geodesic. Mathematic Subject Classification: 32U05, 32U15, 32U35, 32W20
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信