M. Anto Alosius, Pushparaj Thomai, Vikas Sharma, B. Chandrasekaran
{"title":"喷射参数对装有CRDI的固定式柴油机燃用来自废弃原料的纯生物柴油混合物的影响","authors":"M. Anto Alosius, Pushparaj Thomai, Vikas Sharma, B. Chandrasekaran","doi":"10.1139/tcsme-2022-0061","DOIUrl":null,"url":null,"abstract":"This present work deals with the effects of injection parameters such as pilot-main injection mass ratio and dwell time on combustion, performance, and emission characteristics of a diesel engine. A single cylinder diesel engine is used in this research work with the flexibilities to modify different variables via open electronic control unit. Biodiesel mix (BDM) used in the present work is derived from waste feedstocks of used cooking oil and chicken fat. Throughout the experiment, engine load and speed were maintained constantly at 4.51 brake mean effective pressure and 1500 rpm, respectively. Different pilot mass ratios (10%, 20%, and 30%) and dwell times (20° crank angle (CA), 30° CA, and 40° CA) were tested and results were compared with conventional mode combustion. The results indicated that the pilot injections helped to reduce the ignition lag period and also shortened the combustion duration. The highest brake thermal efficiency of 34.78% was identified with the lowest pilot mass of 10%. According to the results, increased dwell time decreased the oxides of nitrogen emissions but increased the hydrocarbon emissions. The experiment revealed that BDM made of waste feedstocks could be an effective alternative for engine applications with optimized engine operating conditions.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of injection parameters on CRDI-equipped stationary diesel engine fuelled with neat biodiesel mix derived from waste feedstocks\",\"authors\":\"M. Anto Alosius, Pushparaj Thomai, Vikas Sharma, B. Chandrasekaran\",\"doi\":\"10.1139/tcsme-2022-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This present work deals with the effects of injection parameters such as pilot-main injection mass ratio and dwell time on combustion, performance, and emission characteristics of a diesel engine. A single cylinder diesel engine is used in this research work with the flexibilities to modify different variables via open electronic control unit. Biodiesel mix (BDM) used in the present work is derived from waste feedstocks of used cooking oil and chicken fat. Throughout the experiment, engine load and speed were maintained constantly at 4.51 brake mean effective pressure and 1500 rpm, respectively. Different pilot mass ratios (10%, 20%, and 30%) and dwell times (20° crank angle (CA), 30° CA, and 40° CA) were tested and results were compared with conventional mode combustion. The results indicated that the pilot injections helped to reduce the ignition lag period and also shortened the combustion duration. The highest brake thermal efficiency of 34.78% was identified with the lowest pilot mass of 10%. According to the results, increased dwell time decreased the oxides of nitrogen emissions but increased the hydrocarbon emissions. The experiment revealed that BDM made of waste feedstocks could be an effective alternative for engine applications with optimized engine operating conditions.\",\"PeriodicalId\":23285,\"journal\":{\"name\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1139/tcsme-2022-0061\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2022-0061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effects of injection parameters on CRDI-equipped stationary diesel engine fuelled with neat biodiesel mix derived from waste feedstocks
This present work deals with the effects of injection parameters such as pilot-main injection mass ratio and dwell time on combustion, performance, and emission characteristics of a diesel engine. A single cylinder diesel engine is used in this research work with the flexibilities to modify different variables via open electronic control unit. Biodiesel mix (BDM) used in the present work is derived from waste feedstocks of used cooking oil and chicken fat. Throughout the experiment, engine load and speed were maintained constantly at 4.51 brake mean effective pressure and 1500 rpm, respectively. Different pilot mass ratios (10%, 20%, and 30%) and dwell times (20° crank angle (CA), 30° CA, and 40° CA) were tested and results were compared with conventional mode combustion. The results indicated that the pilot injections helped to reduce the ignition lag period and also shortened the combustion duration. The highest brake thermal efficiency of 34.78% was identified with the lowest pilot mass of 10%. According to the results, increased dwell time decreased the oxides of nitrogen emissions but increased the hydrocarbon emissions. The experiment revealed that BDM made of waste feedstocks could be an effective alternative for engine applications with optimized engine operating conditions.
期刊介绍:
Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.