{"title":"利用自动动态锥贯仪进行路基评估,以管理地质基础设施","authors":"Sang Yeob Kim, Jong-Sub Lee, Won-Taek Hong","doi":"10.12989/SSS.2021.27.5.861","DOIUrl":null,"url":null,"abstract":"For the efficient management of geo-infrastructures in the field, engineering properties of the subgrade should be reliably and rapidly investigated. The objective of this study is to estimate and compare the strength and stiffness parameters of subgrades using portable in-situ devices. An automated dynamic cone penetrometer (ACP), dynamic cone penetrometer (DCP), and light falling weight deflectometer (LFWD) are adopted and applied at nine points of soft ground in South Korea. The Nvalue from the ACP (NACP), which efficiently assesses the relatively deep subgrade, is correlated with the dynamic cone penetration index (DCPI) and dynamic deflection modulus (Evd). Test results show that the DCPI and Evd can be estimated in terms of NACP. In particular, the relationship between Evd and NACP is improved when the strain influence factor of the target ground is considered. For the assessment of strength and stiffness parameters, the California bearing ratio (CBR), relative density (Dr), internal friction angle (φ), and elastic moduli determined by the plate loading test (PLT), soil stiffness gauge (SSG), falling weight deflectometer (FWD) are estimated using NACP. The ACP test with the relationships between engineering parameters and NACP may be an effectively method to assess the overall characteristics of the subgrade.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"24 7","pages":"861"},"PeriodicalIF":2.1000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Subgrade assessment using automated dynamic cone penetrometer to manage geo-infrastructures\",\"authors\":\"Sang Yeob Kim, Jong-Sub Lee, Won-Taek Hong\",\"doi\":\"10.12989/SSS.2021.27.5.861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the efficient management of geo-infrastructures in the field, engineering properties of the subgrade should be reliably and rapidly investigated. The objective of this study is to estimate and compare the strength and stiffness parameters of subgrades using portable in-situ devices. An automated dynamic cone penetrometer (ACP), dynamic cone penetrometer (DCP), and light falling weight deflectometer (LFWD) are adopted and applied at nine points of soft ground in South Korea. The Nvalue from the ACP (NACP), which efficiently assesses the relatively deep subgrade, is correlated with the dynamic cone penetration index (DCPI) and dynamic deflection modulus (Evd). Test results show that the DCPI and Evd can be estimated in terms of NACP. In particular, the relationship between Evd and NACP is improved when the strain influence factor of the target ground is considered. For the assessment of strength and stiffness parameters, the California bearing ratio (CBR), relative density (Dr), internal friction angle (φ), and elastic moduli determined by the plate loading test (PLT), soil stiffness gauge (SSG), falling weight deflectometer (FWD) are estimated using NACP. The ACP test with the relationships between engineering parameters and NACP may be an effectively method to assess the overall characteristics of the subgrade.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"24 7\",\"pages\":\"861\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.27.5.861\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.5.861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Subgrade assessment using automated dynamic cone penetrometer to manage geo-infrastructures
For the efficient management of geo-infrastructures in the field, engineering properties of the subgrade should be reliably and rapidly investigated. The objective of this study is to estimate and compare the strength and stiffness parameters of subgrades using portable in-situ devices. An automated dynamic cone penetrometer (ACP), dynamic cone penetrometer (DCP), and light falling weight deflectometer (LFWD) are adopted and applied at nine points of soft ground in South Korea. The Nvalue from the ACP (NACP), which efficiently assesses the relatively deep subgrade, is correlated with the dynamic cone penetration index (DCPI) and dynamic deflection modulus (Evd). Test results show that the DCPI and Evd can be estimated in terms of NACP. In particular, the relationship between Evd and NACP is improved when the strain influence factor of the target ground is considered. For the assessment of strength and stiffness parameters, the California bearing ratio (CBR), relative density (Dr), internal friction angle (φ), and elastic moduli determined by the plate loading test (PLT), soil stiffness gauge (SSG), falling weight deflectometer (FWD) are estimated using NACP. The ACP test with the relationships between engineering parameters and NACP may be an effectively method to assess the overall characteristics of the subgrade.
期刊介绍:
An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include:
Sensors/Actuators(Materials/devices/ informatics/networking)
Structural Health Monitoring and Control
Diagnosis/Prognosis
Life Cycle Engineering(planning/design/ maintenance/renewal)
and related areas.