增生耗散块矩阵的范数不等式

IF 0.2 Q4 MATHEMATICS
Fadi Alrimawi, M. Al-khlyleh, F. A. Abushaheen
{"title":"增生耗散块矩阵的范数不等式","authors":"Fadi Alrimawi, M. Al-khlyleh, F. A. Abushaheen","doi":"10.31392/mfat-npu26_3.2020.02","DOIUrl":null,"url":null,"abstract":"Let T = [Tij ] \\in \\BbbM mn(\\BbbC ) be accretive-dissipative, where Tij \\in \\BbbM n(\\BbbC ) for i, j = 1, 2, ...,m. Let f be a function that is convex and increasing on [0,\\infty ) where f(0) = 0. Then \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\left( \\sum i<j | Tij | \\right) + f \\left( \\sum i<j \\bigm| \\bigm| T \\ast ji\\bigm| \\bigm| 2 \\right) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\leq \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\biggl( m2 m 2 | T | \\biggr) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| . Also, if f is concave and increasing on [0,\\infty ) where f(0) = 0, then \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\left( \\sum i<j | Tij | \\right) + f \\left( \\sum i<j \\bigm| \\bigm| T \\ast ji\\bigm| \\bigm| 2 \\right) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\leq (2m2 2m) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\Biggl( | T | 4 \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| . ¥å © T = Tij \\in \\BbbM mn(\\BbbC ), ¤¥ Tij \\in \\BbbM n(\\BbbC ) ̄à ̈ i, j = 1, 2, ...,m., { aà¥â ̈¢­®¤ ̈á ̈ ̄ â ̈¢­ ¬ âà ̈æï. ¥å © f ® ̄ãa« äã­aæ÷ï, ïa §à®áâ õ ­ [0,\\infty ), ¤¥ f(0) = 0. ’®¤÷ \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\left( \\sum i<j | Tij | \\right) + f \\left( \\sum i<j \\bigm| \\bigm| T \\ast ji\\bigm| \\bigm| 2 \\right) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\leq \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\biggl( m2 m 2 | T | \\biggr) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| . ’ a®¦, ïaé® f õ 㣭ãâ®î, §à®áâ õ ­ [0,\\infty ) ÷ f(0) = 0, â® \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\left( \\sum i<j | Tij | \\right) + f \\left( \\sum i<j \\bigm| \\bigm| T \\ast ji\\bigm| \\bigm| 2 \\right) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\leq (2m2 2m) \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| f \\Biggl( | T | 4 \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| \\bigm| .","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":"9 5","pages":"201-215"},"PeriodicalIF":0.2000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm inequalities for accretive-dissipative block matrices\",\"authors\":\"Fadi Alrimawi, M. Al-khlyleh, F. A. Abushaheen\",\"doi\":\"10.31392/mfat-npu26_3.2020.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let T = [Tij ] \\\\in \\\\BbbM mn(\\\\BbbC ) be accretive-dissipative, where Tij \\\\in \\\\BbbM n(\\\\BbbC ) for i, j = 1, 2, ...,m. Let f be a function that is convex and increasing on [0,\\\\infty ) where f(0) = 0. Then \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\left( \\\\sum i<j | Tij | \\\\right) + f \\\\left( \\\\sum i<j \\\\bigm| \\\\bigm| T \\\\ast ji\\\\bigm| \\\\bigm| 2 \\\\right) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\leq \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\biggl( m2 m 2 | T | \\\\biggr) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| . Also, if f is concave and increasing on [0,\\\\infty ) where f(0) = 0, then \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\left( \\\\sum i<j | Tij | \\\\right) + f \\\\left( \\\\sum i<j \\\\bigm| \\\\bigm| T \\\\ast ji\\\\bigm| \\\\bigm| 2 \\\\right) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\leq (2m2 2m) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\Biggl( | T | 4 \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| . ¥å © T = Tij \\\\in \\\\BbbM mn(\\\\BbbC ), ¤¥ Tij \\\\in \\\\BbbM n(\\\\BbbC ) ̄à ̈ i, j = 1, 2, ...,m., { aà¥â ̈¢­®¤ ̈á ̈ ̄ â ̈¢­ ¬ âà ̈æï. ¥å © f ® ̄ãa« äã­aæ÷ï, ïa §à®áâ õ ­ [0,\\\\infty ), ¤¥ f(0) = 0. ’®¤÷ \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\left( \\\\sum i<j | Tij | \\\\right) + f \\\\left( \\\\sum i<j \\\\bigm| \\\\bigm| T \\\\ast ji\\\\bigm| \\\\bigm| 2 \\\\right) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\leq \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\biggl( m2 m 2 | T | \\\\biggr) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| . ’ a®¦, ïaé® f õ 㣭ãâ®î, §à®áâ õ ­ [0,\\\\infty ) ÷ f(0) = 0, â® \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\left( \\\\sum i<j | Tij | \\\\right) + f \\\\left( \\\\sum i<j \\\\bigm| \\\\bigm| T \\\\ast ji\\\\bigm| \\\\bigm| 2 \\\\right) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\leq (2m2 2m) \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| f \\\\Biggl( | T | 4 \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| \\\\bigm| .\",\"PeriodicalId\":44325,\"journal\":{\"name\":\"Methods of Functional Analysis and Topology\",\"volume\":\"9 5\",\"pages\":\"201-215\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Functional Analysis and Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31392/mfat-npu26_3.2020.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/mfat-npu26_3.2020.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设T=[Tij]\in\BbbMmn(\BbbC)是增生耗散的,其中对于i,j=1,2。。。,m。设f是在[0,\infty)上凸且递增的函数,其中f(0)=0。然后\bigm|\bigm|| \bigm| \bigm |\bigm || \bigm | \bigm|1\bigm|3\bigm(\sum i本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Norm inequalities for accretive-dissipative block matrices
Let T = [Tij ] \in \BbbM mn(\BbbC ) be accretive-dissipative, where Tij \in \BbbM n(\BbbC ) for i, j = 1, 2, ...,m. Let f be a function that is convex and increasing on [0,\infty ) where f(0) = 0. Then \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| f \left( \sum i
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed arXiv overlay journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信