Dietlein-Elgart后高阶Anderson模型的局部特征值统计

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S. Herschenfeld, P. Hislop
{"title":"Dietlein-Elgart后高阶Anderson模型的局部特征值统计","authors":"S. Herschenfeld, P. Hislop","doi":"10.1142/s0129055x23500174","DOIUrl":null,"url":null,"abstract":"We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform higher-rank $m \\geq 2$, single-site perturbations, is given by a Poisson point process with intensity measure $n(E_0)~ds$, where $n(E_0)$ is the density of states at energy $E_0$ in the region of localization near the spectral band edges. This improves the result of Hislop and Krishna (arXiv:1809.01236), who proved that the LES is a compound Poisson process with L\\'evy measure supported on the set $\\{1, 2, \\ldots, m \\}$. Our proofs are an application of the ideas of Dieltein and Elgart to these higher-rank lattice models with two spectral band edges, and illustrate, in a simpler setting, the key steps of the proof of Dieltein and Elgart.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"43 21","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Eigenvalue Statistics for Higher-Rank Anderson Models After Dietlein-Elgart\",\"authors\":\"S. Herschenfeld, P. Hislop\",\"doi\":\"10.1142/s0129055x23500174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform higher-rank $m \\\\geq 2$, single-site perturbations, is given by a Poisson point process with intensity measure $n(E_0)~ds$, where $n(E_0)$ is the density of states at energy $E_0$ in the region of localization near the spectral band edges. This improves the result of Hislop and Krishna (arXiv:1809.01236), who proved that the LES is a compound Poisson process with L\\\\'evy measure supported on the set $\\\\{1, 2, \\\\ldots, m \\\\}$. Our proofs are an application of the ideas of Dieltein and Elgart to these higher-rank lattice models with two spectral band edges, and illustrate, in a simpler setting, the key steps of the proof of Dieltein and Elgart.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\"43 21\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129055x23500174\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x23500174","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们使用Dietlein和Elgart (arXiv:1712.03925)提出的特征值水平间隔方法证明了具有均匀高阶$m \geq 2$单点扰动的$Z^d$上的Anderson模型的局部特征值统计量(LES)是由强度测度为$n(E_0)~ds$的泊松点过程给出的,其中$n(E_0)$是谱带边缘附近局域化区域中能量$E_0$处的态密度。这改进了Hislop和Krishna (arXiv:1809.01236)证明LES是在集合$\{1, 2, \ldots, m \}$上支持lsamvy测度的复合泊松过程的结果。我们的证明是Dieltein和Elgart的思想在这些具有两个谱带边缘的高阶晶格模型中的应用,并在一个更简单的设置中说明了Dieltein和Elgart证明的关键步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Eigenvalue Statistics for Higher-Rank Anderson Models After Dietlein-Elgart
We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform higher-rank $m \geq 2$, single-site perturbations, is given by a Poisson point process with intensity measure $n(E_0)~ds$, where $n(E_0)$ is the density of states at energy $E_0$ in the region of localization near the spectral band edges. This improves the result of Hislop and Krishna (arXiv:1809.01236), who proved that the LES is a compound Poisson process with L\'evy measure supported on the set $\{1, 2, \ldots, m \}$. Our proofs are an application of the ideas of Dieltein and Elgart to these higher-rank lattice models with two spectral band edges, and illustrate, in a simpler setting, the key steps of the proof of Dieltein and Elgart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信