相对Mishchenko-Fomenko高指数和几乎平坦束II:几乎平坦指数配对

IF 0.7 2区 数学 Q2 MATHEMATICS
Yosuke Kubota
{"title":"相对Mishchenko-Fomenko高指数和几乎平坦束II:几乎平坦指数配对","authors":"Yosuke Kubota","doi":"10.4171/jncg/432","DOIUrl":null,"url":null,"abstract":"This is the second part of a series of papers which bridges the Chang--Weinberger--Yu relative higher index and geometry of almost flat hermitian vector bundles on manifolds with boundary. In this paper we apply the description of the relative higher index given in Part I to provide the relative version of the Hanke--Schick theorem, which relates the relative higher index with index pairing of a K-homology cycle with almost flat relative vector bundles. We also deal with the quantitative version and the dual problem of this theorem.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"35 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The relative Mishchenko–Fomenko higher index and almost flat bundles II: Almost flat index pairing\",\"authors\":\"Yosuke Kubota\",\"doi\":\"10.4171/jncg/432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second part of a series of papers which bridges the Chang--Weinberger--Yu relative higher index and geometry of almost flat hermitian vector bundles on manifolds with boundary. In this paper we apply the description of the relative higher index given in Part I to provide the relative version of the Hanke--Schick theorem, which relates the relative higher index with index pairing of a K-homology cycle with almost flat relative vector bundles. We also deal with the quantitative version and the dual problem of this theorem.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/432\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/432","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

这是一系列论文的第二部分,连接Chang- Weinberger- Yu相对高指数和具有边界流形上几乎平坦厄米向量束的几何。本文利用第1部分给出的相对高指标的描述,给出了汉克—希克定理的相对版本,它将相对高指标与具有几乎平坦相对向量束的k -同调环的指标对联系起来。我们还处理了这个定理的定量版本和对偶问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The relative Mishchenko–Fomenko higher index and almost flat bundles II: Almost flat index pairing
This is the second part of a series of papers which bridges the Chang--Weinberger--Yu relative higher index and geometry of almost flat hermitian vector bundles on manifolds with boundary. In this paper we apply the description of the relative higher index given in Part I to provide the relative version of the Hanke--Schick theorem, which relates the relative higher index with index pairing of a K-homology cycle with almost flat relative vector bundles. We also deal with the quantitative version and the dual problem of this theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信