具有总残差映射的有值字段

IF 0.9 1区 数学 Q1 LOGIC
Konstantinos Kartas
{"title":"具有总残差映射的有值字段","authors":"Konstantinos Kartas","doi":"10.1142/s0219061324500053","DOIUrl":null,"url":null,"abstract":"When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\\text{res}:k(\\!(t)\\!)\\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\\text{VF}_{\\text{res},\\iota}$ of valued fields equipped with a linear form $\\text{res}:K\\to k$ which specializes to the residue map on the valuation ring. We prove that $\\text{VF}_{\\text{res},\\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\\!(t)\\!),\\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\\mathbb{C}(\\!(t)\\!), \\text{Res}_0)$ is undecidable, where $\\text{Res}_0:\\mathbb{C}(\\!(t)\\!)\\to \\mathbb{C}:f\\mapsto \\text{Res}_0(f)$ maps $f$ to its complex residue at $0$.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"13 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valued fields with a total residue map\",\"authors\":\"Konstantinos Kartas\",\"doi\":\"10.1142/s0219061324500053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\\\\text{res}:k(\\\\!(t)\\\\!)\\\\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\\\\text{VF}_{\\\\text{res},\\\\iota}$ of valued fields equipped with a linear form $\\\\text{res}:K\\\\to k$ which specializes to the residue map on the valuation ring. We prove that $\\\\text{VF}_{\\\\text{res},\\\\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\\\\!(t)\\\\!),\\\\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\\\\mathbb{C}(\\\\!(t)\\\\!), \\\\text{Res}_0)$ is undecidable, where $\\\\text{Res}_0:\\\\mathbb{C}(\\\\!(t)\\\\!)\\\\to \\\\mathbb{C}:f\\\\mapsto \\\\text{Res}_0(f)$ maps $f$ to its complex residue at $0$.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061324500053\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500053","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

当$k$是有限域时,Becker-Denef Lipschitz(1979)观察到总残差映射$\text{res}:k(\!(t)\!)\to k$,它选取了Laurent级数的常数项,在具有$t$参数的环的语言中是可定义的。在这一观察的推动下,我们研究了$\text理论{VF}_具有线性形式$\text{res}:K\to K$的有值域的{\text},\iota}$,该线性形式专门用于估值环上的残差映射。我们证明$\text{VF}_{\text{res},\iota}$不允许有模型伴侣。此外,我们还证明了幂级数域$(k(\!(t)\!),\text{res})$,只要$k$是一个无限域,它就不可判定。因此,我们得到$(\mathbb{C}(\!(t)\!),\文本{Res}_0)$是不可判定的,其中$\text{Res}_0:\mathbb{C}(\!(t)\!)\to\mathbb{C}:f\mapsto\text{Res}_0(f) $将$f$映射到它在$0$处的复余数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Valued fields with a total residue map
When $k$ is a finite field, Becker-Denef-Lipschitz (1979) observed that the total residue map $\text{res}:k(\!(t)\!)\to k$, which picks out the constant term of the Laurent series, is definable in the language of rings with a parameter for $t$. Driven by this observation, we study the theory $\text{VF}_{\text{res},\iota}$ of valued fields equipped with a linear form $\text{res}:K\to k$ which specializes to the residue map on the valuation ring. We prove that $\text{VF}_{\text{res},\iota}$ does not admit a model companion. In addition, we show that the power series field $(k(\!(t)\!),\text{res})$, equipped with such a total residue map, is undecidable whenever $k$ is an infinite field. As a consequence, we get that $(\mathbb{C}(\!(t)\!), \text{Res}_0)$ is undecidable, where $\text{Res}_0:\mathbb{C}(\!(t)\!)\to \mathbb{C}:f\mapsto \text{Res}_0(f)$ maps $f$ to its complex residue at $0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信