关于正特征域上阿贝尔变种的Fourier–Mukai伙伴的一个注记

Pub Date : 2021-07-12 DOI:10.1215/21562261-2023-0008
Zhiyuan Li, Haitao Zou
{"title":"关于正特征域上阿贝尔变种的Fourier–Mukai伙伴的一个注记","authors":"Zhiyuan Li, Haitao Zou","doi":"10.1215/21562261-2023-0008","DOIUrl":null,"url":null,"abstract":"Over complex numbers, the Fourier-Mukai partners of abelian varieties are well-understood. A celebrated result is Orlov's derived Torelli theorem. In this note, we study the FM-partners of abelian varieties in positive characteristic. We notice that, in odd characteristics, two abelian varieties of odd dimension are derived equivalent if their associated Kummer stacks are derived equivalent, which is Krug and Sosna's result over complex numbers. For abelian surfaces in odd characteristic, we show that two abelian surfaces are derived equivalent if and only if their associated Kummer surfaces are isomorphic. This extends the result [doi:10.1215/s0012-7094-03-12036-0] to odd characteristic fields, which solved a classical problem originally from Shioda. Furthermore, we establish the derived Torelli theorem for supersingular abelian varieties and apply it to characterize the quasi-liftable birational models of supersingular generalized Kummer varieties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields\",\"authors\":\"Zhiyuan Li, Haitao Zou\",\"doi\":\"10.1215/21562261-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over complex numbers, the Fourier-Mukai partners of abelian varieties are well-understood. A celebrated result is Orlov's derived Torelli theorem. In this note, we study the FM-partners of abelian varieties in positive characteristic. We notice that, in odd characteristics, two abelian varieties of odd dimension are derived equivalent if their associated Kummer stacks are derived equivalent, which is Krug and Sosna's result over complex numbers. For abelian surfaces in odd characteristic, we show that two abelian surfaces are derived equivalent if and only if their associated Kummer surfaces are isomorphic. This extends the result [doi:10.1215/s0012-7094-03-12036-0] to odd characteristic fields, which solved a classical problem originally from Shioda. Furthermore, we establish the derived Torelli theorem for supersingular abelian varieties and apply it to characterize the quasi-liftable birational models of supersingular generalized Kummer varieties.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2023-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在复数上,阿贝尔变体的傅立叶-穆凯伙伴是很好理解的。一个著名的结果是奥尔洛夫导出的托雷利定理。在本文中,我们研究了具有正向特征的阿贝尔品种的FM伴侣。我们注意到,在奇特征中,如果奇维的两个阿贝尔变体的相关Kummer堆栈是导出等价的,则它们是导出等价,这是Krug和Sosna在复数上的结果。对于奇特征的阿贝尔曲面,我们证明了两个阿贝尔曲面是等价的,当且仅当它们的相关Kummer曲面同构。这将结果[doi:10.1215/s012-7094-03-12036-0]扩展到奇数特征场,解决了Shioda的一个经典问题。此外,我们建立了超奇异阿贝尔变种的Torelli定理,并将其应用于刻画超奇异广义Kummer变种的拟可提升双态模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields
Over complex numbers, the Fourier-Mukai partners of abelian varieties are well-understood. A celebrated result is Orlov's derived Torelli theorem. In this note, we study the FM-partners of abelian varieties in positive characteristic. We notice that, in odd characteristics, two abelian varieties of odd dimension are derived equivalent if their associated Kummer stacks are derived equivalent, which is Krug and Sosna's result over complex numbers. For abelian surfaces in odd characteristic, we show that two abelian surfaces are derived equivalent if and only if their associated Kummer surfaces are isomorphic. This extends the result [doi:10.1215/s0012-7094-03-12036-0] to odd characteristic fields, which solved a classical problem originally from Shioda. Furthermore, we establish the derived Torelli theorem for supersingular abelian varieties and apply it to characterize the quasi-liftable birational models of supersingular generalized Kummer varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信