用于控制的大脑建模:综述

Gagan Acharya, Sebastian F. Ruf, Erfan Nozari
{"title":"用于控制的大脑建模:综述","authors":"Gagan Acharya, Sebastian F. Ruf, Erfan Nozari","doi":"10.3389/fcteg.2022.1046764","DOIUrl":null,"url":null,"abstract":"Neurostimulation technologies have seen a recent surge in interest from the neuroscience and controls communities alike due to their proven potential to treat conditions such as epilepsy, Parkinson’s Disease, and depression. The provided stimulation can be of different types, such as electric, magnetic, and optogenetic, and is generally applied to a specific region of the brain in order to drive the local and/or global neural dynamics to a desired state of (in)activity. For most neurostimulation techniques, however, an underlying theoretical understanding of their efficacy is still lacking. From a control-theoretic perspective, it is important to understand how each stimulus modality interacts with the inherent complex network dynamics of the brain in order to assess the controllability of the system and develop neurophysiologically relevant computational models that can be used to design the stimulation profile systematically and in closed loop. In this paper, we review the computational modeling studies of 1) deep brain stimulation, 2) transcranial magnetic stimulation, 3) direct current stimulation, 4) transcranial electrical stimulation, and 5) optogenetics as five of the most popular and commonly used neurostimulation technologies in research and clinical settings. For each technology, we split the reviewed studies into 1) theory-driven biophysical models capturing the low-level physics of the interactions between the stimulation source and neuronal tissue, 2) data-driven stimulus-response models which capture the end-to-end effects of stimulation on various biomarkers of interest, and 3) data-driven dynamical system models that extract the precise dynamics of the brain’s response to neurostimulation from neural data. While our focus is particularly on the latter category due to their greater utility in control design, we review key works in the former two categories as the basis and context in which dynamical system models have been and will be developed. In all cases, we highlight the strength and weaknesses of the reviewed works and conclude the review with discussions on outstanding challenges and critical avenues for future work.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Brain modeling for control: A review\",\"authors\":\"Gagan Acharya, Sebastian F. Ruf, Erfan Nozari\",\"doi\":\"10.3389/fcteg.2022.1046764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurostimulation technologies have seen a recent surge in interest from the neuroscience and controls communities alike due to their proven potential to treat conditions such as epilepsy, Parkinson’s Disease, and depression. The provided stimulation can be of different types, such as electric, magnetic, and optogenetic, and is generally applied to a specific region of the brain in order to drive the local and/or global neural dynamics to a desired state of (in)activity. For most neurostimulation techniques, however, an underlying theoretical understanding of their efficacy is still lacking. From a control-theoretic perspective, it is important to understand how each stimulus modality interacts with the inherent complex network dynamics of the brain in order to assess the controllability of the system and develop neurophysiologically relevant computational models that can be used to design the stimulation profile systematically and in closed loop. In this paper, we review the computational modeling studies of 1) deep brain stimulation, 2) transcranial magnetic stimulation, 3) direct current stimulation, 4) transcranial electrical stimulation, and 5) optogenetics as five of the most popular and commonly used neurostimulation technologies in research and clinical settings. For each technology, we split the reviewed studies into 1) theory-driven biophysical models capturing the low-level physics of the interactions between the stimulation source and neuronal tissue, 2) data-driven stimulus-response models which capture the end-to-end effects of stimulation on various biomarkers of interest, and 3) data-driven dynamical system models that extract the precise dynamics of the brain’s response to neurostimulation from neural data. While our focus is particularly on the latter category due to their greater utility in control design, we review key works in the former two categories as the basis and context in which dynamical system models have been and will be developed. In all cases, we highlight the strength and weaknesses of the reviewed works and conclude the review with discussions on outstanding challenges and critical avenues for future work.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2022.1046764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2022.1046764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经刺激技术最近引起了神经科学界和控制界的兴趣,因为它们被证明有治疗癫痫、帕金森病和抑郁症等疾病的潜力。所提供的刺激可以是不同类型的,例如电的、磁的和光遗传学的,并且通常应用于大脑的特定区域,以便将局部和/或全局神经动力学驱动到期望的活动状态。然而,对于大多数神经刺激技术来说,仍然缺乏对其疗效的基本理论理解。从控制理论的角度来看,重要的是要了解每种刺激模式如何与大脑固有的复杂网络动力学相互作用,以评估系统的可控性,并开发可用于系统地、闭环地设计刺激轮廓的神经生理相关计算模型。在这篇论文中,我们回顾了1)脑深部刺激、2)经颅磁刺激、3)直流刺激、4)经颅电刺激和5)光遗传学的计算建模研究,这是研究和临床环境中最流行和最常用的五种神经刺激技术。对于每种技术,我们将回顾的研究分为1)理论驱动的生物物理模型,捕捉刺激源和神经元组织之间相互作用的低水平物理,2)数据驱动的刺激反应模型,捕捉激励对各种感兴趣的生物标志物的端到端影响,以及3)数据驱动的动力学系统模型,该模型从神经数据中提取大脑对神经刺激反应的精确动力学。虽然我们特别关注后一类,因为它们在控制设计中更有用,但我们回顾了前两类中的关键工作,作为已经和将要开发动力系统模型的基础和背景。在所有情况下,我们都强调了审查工作的优势和劣势,并在审查结束时讨论了悬而未决的挑战和未来工作的关键途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain modeling for control: A review
Neurostimulation technologies have seen a recent surge in interest from the neuroscience and controls communities alike due to their proven potential to treat conditions such as epilepsy, Parkinson’s Disease, and depression. The provided stimulation can be of different types, such as electric, magnetic, and optogenetic, and is generally applied to a specific region of the brain in order to drive the local and/or global neural dynamics to a desired state of (in)activity. For most neurostimulation techniques, however, an underlying theoretical understanding of their efficacy is still lacking. From a control-theoretic perspective, it is important to understand how each stimulus modality interacts with the inherent complex network dynamics of the brain in order to assess the controllability of the system and develop neurophysiologically relevant computational models that can be used to design the stimulation profile systematically and in closed loop. In this paper, we review the computational modeling studies of 1) deep brain stimulation, 2) transcranial magnetic stimulation, 3) direct current stimulation, 4) transcranial electrical stimulation, and 5) optogenetics as five of the most popular and commonly used neurostimulation technologies in research and clinical settings. For each technology, we split the reviewed studies into 1) theory-driven biophysical models capturing the low-level physics of the interactions between the stimulation source and neuronal tissue, 2) data-driven stimulus-response models which capture the end-to-end effects of stimulation on various biomarkers of interest, and 3) data-driven dynamical system models that extract the precise dynamics of the brain’s response to neurostimulation from neural data. While our focus is particularly on the latter category due to their greater utility in control design, we review key works in the former two categories as the basis and context in which dynamical system models have been and will be developed. In all cases, we highlight the strength and weaknesses of the reviewed works and conclude the review with discussions on outstanding challenges and critical avenues for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信