{"title":"用于声学通信的水下通道几何建模","authors":"Hala A. Naman, A. E. Abdelkareem","doi":"10.26636/jtit.2022.164822","DOIUrl":null,"url":null,"abstract":" The achievement of efficient data transmissions via underwater acoustic channels, while dealing with large data packets and real-time data fed by underwater sensors, requires a high data rate. However, diffraction, refraction, and reflection phenomena, as well as phase and amplitude variations, are common problems experienced in underwater acoustic (UWA) channels. These factors make it difficult to achieve high-speed and long-range underwater acoustic communications. Due to multipath interference caused by surface and ocean floor reflections, the process of modeling acoustic channels under the water’s surface is of key importance. This work proposes a simple geometry-based channel model for underwater communication. The impact that varying numbers of reflections, low water depth values, and distances between the transmitter and the receiver exert on channel impulse response and transmission loss is examined. The high degree of similarity between numerical simulations and actual results demonstrates that the proposed model is suitable for describing shallow underwater acoustic communication environments.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"259 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Geometry of an Underwater Channel for Acoustic Communication\",\"authors\":\"Hala A. Naman, A. E. Abdelkareem\",\"doi\":\"10.26636/jtit.2022.164822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" The achievement of efficient data transmissions via underwater acoustic channels, while dealing with large data packets and real-time data fed by underwater sensors, requires a high data rate. However, diffraction, refraction, and reflection phenomena, as well as phase and amplitude variations, are common problems experienced in underwater acoustic (UWA) channels. These factors make it difficult to achieve high-speed and long-range underwater acoustic communications. Due to multipath interference caused by surface and ocean floor reflections, the process of modeling acoustic channels under the water’s surface is of key importance. This work proposes a simple geometry-based channel model for underwater communication. The impact that varying numbers of reflections, low water depth values, and distances between the transmitter and the receiver exert on channel impulse response and transmission loss is examined. The high degree of similarity between numerical simulations and actual results demonstrates that the proposed model is suitable for describing shallow underwater acoustic communication environments.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"259 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2022.164822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2022.164822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Modeling the Geometry of an Underwater Channel for Acoustic Communication
The achievement of efficient data transmissions via underwater acoustic channels, while dealing with large data packets and real-time data fed by underwater sensors, requires a high data rate. However, diffraction, refraction, and reflection phenomena, as well as phase and amplitude variations, are common problems experienced in underwater acoustic (UWA) channels. These factors make it difficult to achieve high-speed and long-range underwater acoustic communications. Due to multipath interference caused by surface and ocean floor reflections, the process of modeling acoustic channels under the water’s surface is of key importance. This work proposes a simple geometry-based channel model for underwater communication. The impact that varying numbers of reflections, low water depth values, and distances between the transmitter and the receiver exert on channel impulse response and transmission loss is examined. The high degree of similarity between numerical simulations and actual results demonstrates that the proposed model is suitable for describing shallow underwater acoustic communication environments.