两个实矩阵的乘积序列的谱性质

IF 0.7 4区 数学 Q2 Mathematics
M. Brundu, M. Zennaro
{"title":"两个实矩阵的乘积序列的谱性质","authors":"M. Brundu, M. Zennaro","doi":"10.13001/ela.2022.6651","DOIUrl":null,"url":null,"abstract":"\n\n\nThe aim of this paper is to analyze the asymptotic behavior of the eigenvalues and eigenvectors of particular sequences of products involving two square real matrices $A$ and $B$, namely of the form $B^kA$, as $k\\rightarrow \\infty$. This analysis represents a detailed deepening of a particular case within a general theory on finite families $\\mathcal{F} = \\{ A_1, \\ldots, A_m \\}$ of real square matrices already available in the literature. The Bachmann-Landau symbols and related results are largely used and are presented in a systematic way in the final Appendix.\n\n\n","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral properties of certain sequences of products of two real matrices\",\"authors\":\"M. Brundu, M. Zennaro\",\"doi\":\"10.13001/ela.2022.6651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nThe aim of this paper is to analyze the asymptotic behavior of the eigenvalues and eigenvectors of particular sequences of products involving two square real matrices $A$ and $B$, namely of the form $B^kA$, as $k\\\\rightarrow \\\\infty$. This analysis represents a detailed deepening of a particular case within a general theory on finite families $\\\\mathcal{F} = \\\\{ A_1, \\\\ldots, A_m \\\\}$ of real square matrices already available in the literature. The Bachmann-Landau symbols and related results are largely used and are presented in a systematic way in the final Appendix.\\n\\n\\n\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6651\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6651","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是分析涉及两个平方实矩阵$A$和$B$的特定乘积序列的特征值和特征向量的渐近性,即形式为$B^kA$,为$k\rightarrow \infty$。这种分析代表了一个具体的情况下,在有限族的一般理论$\mathcal{F} = \{ A_1, \ldots, A_m \}$实方阵已经在文献中可用的详细深化。巴赫曼-朗道符号和相关的结果被大量使用,并在最后的附录中以系统的方式呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral properties of certain sequences of products of two real matrices
The aim of this paper is to analyze the asymptotic behavior of the eigenvalues and eigenvectors of particular sequences of products involving two square real matrices $A$ and $B$, namely of the form $B^kA$, as $k\rightarrow \infty$. This analysis represents a detailed deepening of a particular case within a general theory on finite families $\mathcal{F} = \{ A_1, \ldots, A_m \}$ of real square matrices already available in the literature. The Bachmann-Landau symbols and related results are largely used and are presented in a systematic way in the final Appendix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信