从半模格的角度重新审视费格尔几何

Q4 Mathematics
G'abor Cz'edli
{"title":"从半模格的角度重新审视费格尔几何","authors":"G'abor Cz'edli","doi":"10.7151/dmgaa.1416","DOIUrl":null,"url":null,"abstract":"In 1980, U. Faigle introduced a sort of finite geometries on posets that are in bijective correspondence with finite semimodular lattices. His result has almost been forgotten in lattice theory. Here we simplify the axiomatization of these geometries, which we call Faigle geometries. To exemplify their usefulness, we give a short proof of a theorem of Grätzer and E. Knapp (2009) asserting that each slim semimodular lattice L has a congruence-preserving extension to a slim rectangular lattice of the same length as L. As another application of Faigle geometries, we give a short proof of G. Grätzer and E. W. Kiss’ result from 1986 (also proved by M. Wild in 1993, the present author and E. T. Schmidt in 2010, and B. Skublics in 2013) that each finite semimodular lattice L has an extension to a geometric lattice of the same length as L.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Revisiting Faigle geometries from a perspective of semimodular lattices\",\"authors\":\"G'abor Cz'edli\",\"doi\":\"10.7151/dmgaa.1416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1980, U. Faigle introduced a sort of finite geometries on posets that are in bijective correspondence with finite semimodular lattices. His result has almost been forgotten in lattice theory. Here we simplify the axiomatization of these geometries, which we call Faigle geometries. To exemplify their usefulness, we give a short proof of a theorem of Grätzer and E. Knapp (2009) asserting that each slim semimodular lattice L has a congruence-preserving extension to a slim rectangular lattice of the same length as L. As another application of Faigle geometries, we give a short proof of G. Grätzer and E. W. Kiss’ result from 1986 (also proved by M. Wild in 1993, the present author and E. T. Schmidt in 2010, and B. Skublics in 2013) that each finite semimodular lattice L has an extension to a geometric lattice of the same length as L.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

1980年,U.Faigle在偏序集上引入了一类与有限半模格双射对应的有限几何。他的结果在格理论中几乎被遗忘了。在这里,我们简化了这些几何的公理化,我们称之为Faigle几何。为了证明它们的有用性,我们给出了Grätzer和E.Knapp(2009)的一个定理的简短证明,该定理断言每个细长半模格L对与L相同长度的细长矩形格具有保同余扩展。Wild在1993年,本作者和E.T.Schmidt在2010年,以及B.Skublics在2013年),每个有限半模格L都有一个与L相同长度的几何格的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Faigle geometries from a perspective of semimodular lattices
In 1980, U. Faigle introduced a sort of finite geometries on posets that are in bijective correspondence with finite semimodular lattices. His result has almost been forgotten in lattice theory. Here we simplify the axiomatization of these geometries, which we call Faigle geometries. To exemplify their usefulness, we give a short proof of a theorem of Grätzer and E. Knapp (2009) asserting that each slim semimodular lattice L has a congruence-preserving extension to a slim rectangular lattice of the same length as L. As another application of Faigle geometries, we give a short proof of G. Grätzer and E. W. Kiss’ result from 1986 (also proved by M. Wild in 1993, the present author and E. T. Schmidt in 2010, and B. Skublics in 2013) that each finite semimodular lattice L has an extension to a geometric lattice of the same length as L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信