C. Nguyen, Minh-Dinh Bui, Ngoc-Kien Nguyen, Van-Tinh Nguyen
{"title":"5G基站有源天线单元V形翅片散热器的优化设计","authors":"C. Nguyen, Minh-Dinh Bui, Ngoc-Kien Nguyen, Van-Tinh Nguyen","doi":"10.5614/j.eng.technol.sci.2022.54.3.9","DOIUrl":null,"url":null,"abstract":"The active antenna unit (AAU) is one of the main parts of the 5G base station, which has a large size and a high density of chipsets, and operates at a significantly high temperature. This systematic study presents an optimal design for the heat sink of an AAU with a V-shaped fin arrangement. First, a simulation of the heat dissipation was conducted on two designs of the heat sink – in-line and V-shaped fins – which was validated by experimental results. The result shows that the heat sink with V-shaped fins performed better compared to conventional models such as heat sinks with in-line fins. Secondly, computational fluid dynamics (CFD) and the Lagrange interpolation method were applied to find out an optimal set of design parameters for the heat sink. It is worth noting that the optimal parameters of the orientation angle and fin spacing considerably affected the heat sink’s performance. ","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"66 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Design of V-Shaped Fin Heat Sink for Active Antenna Unit of 5G Base Station\",\"authors\":\"C. Nguyen, Minh-Dinh Bui, Ngoc-Kien Nguyen, Van-Tinh Nguyen\",\"doi\":\"10.5614/j.eng.technol.sci.2022.54.3.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active antenna unit (AAU) is one of the main parts of the 5G base station, which has a large size and a high density of chipsets, and operates at a significantly high temperature. This systematic study presents an optimal design for the heat sink of an AAU with a V-shaped fin arrangement. First, a simulation of the heat dissipation was conducted on two designs of the heat sink – in-line and V-shaped fins – which was validated by experimental results. The result shows that the heat sink with V-shaped fins performed better compared to conventional models such as heat sinks with in-line fins. Secondly, computational fluid dynamics (CFD) and the Lagrange interpolation method were applied to find out an optimal set of design parameters for the heat sink. It is worth noting that the optimal parameters of the orientation angle and fin spacing considerably affected the heat sink’s performance. \",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":\"66 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2022.54.3.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal Design of V-Shaped Fin Heat Sink for Active Antenna Unit of 5G Base Station
The active antenna unit (AAU) is one of the main parts of the 5G base station, which has a large size and a high density of chipsets, and operates at a significantly high temperature. This systematic study presents an optimal design for the heat sink of an AAU with a V-shaped fin arrangement. First, a simulation of the heat dissipation was conducted on two designs of the heat sink – in-line and V-shaped fins – which was validated by experimental results. The result shows that the heat sink with V-shaped fins performed better compared to conventional models such as heat sinks with in-line fins. Secondly, computational fluid dynamics (CFD) and the Lagrange interpolation method were applied to find out an optimal set of design parameters for the heat sink. It is worth noting that the optimal parameters of the orientation angle and fin spacing considerably affected the heat sink’s performance.
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.