{"title":"癌症研究的功能基因组学:体内外应用","authors":"T. O’Loughlin, Luke A. Gilbert","doi":"10.1146/ANNUREV-CANCERBIO-030518-055742","DOIUrl":null,"url":null,"abstract":"Functional genomics holds great promise for the dissection of cancer biology. The elucidation of genetic cooperation and molecular details that govern oncogenesis, metastasis, and response to therapy is made possible by robust technologies for perturbing gene function coupled to quantitative analysis of cancer phenotypes resulting from genetic or epigenetic perturbations. Multiplexed genetic perturbations enable the dissection of cooperative genetic lesions as well as the identification of synthetic lethal gene pairs that hold particular promise for constructing innovative cancer therapies. Lastly, functional genomics strategies enable the highly multiplexed in vivo analysis of genes that govern tumorigenesis as well as of the complex multicellular biology of a tumor, such as immune response and metastasis phenotypes. In this review, we discuss both historical and emerging functional genomics approaches and their impact on the cancer research landscape.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":"38 12","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-CANCERBIO-030518-055742","citationCount":"9","resultStr":"{\"title\":\"Functional Genomics for Cancer Research: Applications In Vivo and In Vitro\",\"authors\":\"T. O’Loughlin, Luke A. Gilbert\",\"doi\":\"10.1146/ANNUREV-CANCERBIO-030518-055742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional genomics holds great promise for the dissection of cancer biology. The elucidation of genetic cooperation and molecular details that govern oncogenesis, metastasis, and response to therapy is made possible by robust technologies for perturbing gene function coupled to quantitative analysis of cancer phenotypes resulting from genetic or epigenetic perturbations. Multiplexed genetic perturbations enable the dissection of cooperative genetic lesions as well as the identification of synthetic lethal gene pairs that hold particular promise for constructing innovative cancer therapies. Lastly, functional genomics strategies enable the highly multiplexed in vivo analysis of genes that govern tumorigenesis as well as of the complex multicellular biology of a tumor, such as immune response and metastasis phenotypes. In this review, we discuss both historical and emerging functional genomics approaches and their impact on the cancer research landscape.\",\"PeriodicalId\":54233,\"journal\":{\"name\":\"Annual Review of Cancer Biology-Series\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-CANCERBIO-030518-055742\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Cancer Biology-Series\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-CANCERBIO-030518-055742\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/ANNUREV-CANCERBIO-030518-055742","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Functional Genomics for Cancer Research: Applications In Vivo and In Vitro
Functional genomics holds great promise for the dissection of cancer biology. The elucidation of genetic cooperation and molecular details that govern oncogenesis, metastasis, and response to therapy is made possible by robust technologies for perturbing gene function coupled to quantitative analysis of cancer phenotypes resulting from genetic or epigenetic perturbations. Multiplexed genetic perturbations enable the dissection of cooperative genetic lesions as well as the identification of synthetic lethal gene pairs that hold particular promise for constructing innovative cancer therapies. Lastly, functional genomics strategies enable the highly multiplexed in vivo analysis of genes that govern tumorigenesis as well as of the complex multicellular biology of a tumor, such as immune response and metastasis phenotypes. In this review, we discuss both historical and emerging functional genomics approaches and their impact on the cancer research landscape.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.