{"title":"基于超宽带的移动机器人绑架恢复自适应蒙特卡罗定位","authors":"R. Lin, Shuai Dong, Wei-wei Zhao, Yu-hui Cheng","doi":"10.1177/17298806231163950","DOIUrl":null,"url":null,"abstract":"In the article, a global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization is proposed for quick and robust kidnap recovery of mobile robot. First, two ultra-wide-band modules, the tag installed inside the mobile robot and the anchor installed inside charging station, are used to obtain the relative distance between the mobile robot and the charging station. Second, the global grid map is converted into a map with obstacle noise given the ranging accuracy of the ultra-wide-band modules with different obstacles. Third, while the robot is kidnapped, matching grids are screened based on the range information of ultra-wide-band modules and the obstacle noise of the grids. Finally, global localization algorithm is performed based on ultra-wide-band-based adaptive Monte Carlo localization to convert randomly generated particles from the whole map into randomly generated particles in the local map. Experimental results based on gazebo simulation and a real scenario showed that our global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization not only significantly helped to improve the chances of the robot global pose recovery from lost or kidnapped state but also enabled the robot kidnap recovery with a smaller number of randomly generated particles, thus reducing the time to recover its accurate global localization. The algorithm was also more effective especially for kidnap recovery in a similar and large scenario.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":"149 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-wide-band-based adaptive Monte Carlo localization for kidnap recovery of mobile robot\",\"authors\":\"R. Lin, Shuai Dong, Wei-wei Zhao, Yu-hui Cheng\",\"doi\":\"10.1177/17298806231163950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article, a global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization is proposed for quick and robust kidnap recovery of mobile robot. First, two ultra-wide-band modules, the tag installed inside the mobile robot and the anchor installed inside charging station, are used to obtain the relative distance between the mobile robot and the charging station. Second, the global grid map is converted into a map with obstacle noise given the ranging accuracy of the ultra-wide-band modules with different obstacles. Third, while the robot is kidnapped, matching grids are screened based on the range information of ultra-wide-band modules and the obstacle noise of the grids. Finally, global localization algorithm is performed based on ultra-wide-band-based adaptive Monte Carlo localization to convert randomly generated particles from the whole map into randomly generated particles in the local map. Experimental results based on gazebo simulation and a real scenario showed that our global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization not only significantly helped to improve the chances of the robot global pose recovery from lost or kidnapped state but also enabled the robot kidnap recovery with a smaller number of randomly generated particles, thus reducing the time to recover its accurate global localization. The algorithm was also more effective especially for kidnap recovery in a similar and large scenario.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231163950\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231163950","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Ultra-wide-band-based adaptive Monte Carlo localization for kidnap recovery of mobile robot
In the article, a global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization is proposed for quick and robust kidnap recovery of mobile robot. First, two ultra-wide-band modules, the tag installed inside the mobile robot and the anchor installed inside charging station, are used to obtain the relative distance between the mobile robot and the charging station. Second, the global grid map is converted into a map with obstacle noise given the ranging accuracy of the ultra-wide-band modules with different obstacles. Third, while the robot is kidnapped, matching grids are screened based on the range information of ultra-wide-band modules and the obstacle noise of the grids. Finally, global localization algorithm is performed based on ultra-wide-band-based adaptive Monte Carlo localization to convert randomly generated particles from the whole map into randomly generated particles in the local map. Experimental results based on gazebo simulation and a real scenario showed that our global localization algorithm based on improved ultra-wide-band-based adaptive Monte Carlo localization not only significantly helped to improve the chances of the robot global pose recovery from lost or kidnapped state but also enabled the robot kidnap recovery with a smaller number of randomly generated particles, thus reducing the time to recover its accurate global localization. The algorithm was also more effective especially for kidnap recovery in a similar and large scenario.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.