一类耦合Cahn-Hilliard方程组的数值方法

IF 0.3 Q4 MATHEMATICS
Mattia Martini, G. E. Sodini
{"title":"一类耦合Cahn-Hilliard方程组的数值方法","authors":"Mattia Martini, G. E. Sodini","doi":"10.2478/caim-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we consider a system of coupled Cahn-Hilliard equations describing the phase separation of a copolymer and a homopolymer blend. We propose some numerical methods to approximate the solution of the system which are based on suitable combinations of existing schemes for the single Cahn-Hilliard equation. As a verification for our experimental approach, we present some tests and a detailed description of the numerical solutions’ behaviour obtained by varying the values of the system’s characteristic parameters.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"272 ","pages":"1 - 12"},"PeriodicalIF":0.3000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical methods for a system of coupled Cahn-Hilliard equations\",\"authors\":\"Mattia Martini, G. E. Sodini\",\"doi\":\"10.2478/caim-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we consider a system of coupled Cahn-Hilliard equations describing the phase separation of a copolymer and a homopolymer blend. We propose some numerical methods to approximate the solution of the system which are based on suitable combinations of existing schemes for the single Cahn-Hilliard equation. As a verification for our experimental approach, we present some tests and a detailed description of the numerical solutions’ behaviour obtained by varying the values of the system’s characteristic parameters.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"272 \",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2021-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要在这项工作中,我们考虑了一个描述共聚物和均聚物共混物相分离的耦合Cahn-Hilliard方程组。我们提出了一些数值方法来近似系统的解,这些方法是基于单个Cahn-Hilliard方程的现有格式的适当组合。为了验证我们的实验方法,我们对通过改变系统特征参数的值获得的数值解的行为进行了一些测试和详细描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical methods for a system of coupled Cahn-Hilliard equations
Abstract In this work, we consider a system of coupled Cahn-Hilliard equations describing the phase separation of a copolymer and a homopolymer blend. We propose some numerical methods to approximate the solution of the system which are based on suitable combinations of existing schemes for the single Cahn-Hilliard equation. As a verification for our experimental approach, we present some tests and a detailed description of the numerical solutions’ behaviour obtained by varying the values of the system’s characteristic parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信