通过生成器的分类定义和属性

Q4 Mathematics
Gustavo Arengas
{"title":"通过生成器的分类定义和属性","authors":"Gustavo Arengas","doi":"10.15446/recolma.v53n2.85525","DOIUrl":null,"url":null,"abstract":"In the present work, we show how the study of categorical constructions does not have to be done with all the objects of the category, but we can restrict ourselves to work with families of generators. Thus, universal properties can be characterized through iterated families of generators, which leads us in particular to an alternative version of the adjoint functor theorem. Similarly, the properties of relations or subobjects algebra can be investigated by this method. We end with a result that relates various forms of compactness through representable functors of generators.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":"84 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical definitions and properties via generators\",\"authors\":\"Gustavo Arengas\",\"doi\":\"10.15446/recolma.v53n2.85525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, we show how the study of categorical constructions does not have to be done with all the objects of the category, but we can restrict ourselves to work with families of generators. Thus, universal properties can be characterized through iterated families of generators, which leads us in particular to an alternative version of the adjoint functor theorem. Similarly, the properties of relations or subobjects algebra can be investigated by this method. We end with a result that relates various forms of compactness through representable functors of generators.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\"84 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53n2.85525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53n2.85525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在目前的工作中,我们展示了范畴结构的研究如何不必对范畴的所有对象进行研究,但我们可以将自己限制在生成器族的研究上。因此,全称性质可以通过生成子的迭代族来表征,这将我们特别引向伴随函子定理的另一个版本。同样,关系或子对象代数的性质也可以用这种方法来研究。我们以一个结果结束,这个结果通过生成器的可表示函子联系了各种形式的紧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorical definitions and properties via generators
In the present work, we show how the study of categorical constructions does not have to be done with all the objects of the category, but we can restrict ourselves to work with families of generators. Thus, universal properties can be characterized through iterated families of generators, which leads us in particular to an alternative version of the adjoint functor theorem. Similarly, the properties of relations or subobjects algebra can be investigated by this method. We end with a result that relates various forms of compactness through representable functors of generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信