非算术球商的特殊子变量与Hodge理论

IF 5.7 1区 数学 Q1 MATHEMATICS
G. Baldi, E. Ullmo
{"title":"非算术球商的特殊子变量与Hodge理论","authors":"G. Baldi, E. Ullmo","doi":"10.4007/annals.2023.197.1.3","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma \\subset \\operatorname{PU}(1,n)$ be a lattice, and $S_\\Gamma$ the associated ball quotient. We prove that, if $S_\\Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $\\Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_\\Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_\\Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Special subvarieties of non-arithmetic ball quotients and Hodge theory\",\"authors\":\"G. Baldi, E. Ullmo\",\"doi\":\"10.4007/annals.2023.197.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Gamma \\\\subset \\\\operatorname{PU}(1,n)$ be a lattice, and $S_\\\\Gamma$ the associated ball quotient. We prove that, if $S_\\\\Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $\\\\Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_\\\\Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_\\\\Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.197.1.3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.1.3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

设$\Gamma \子集\operatorname{PU}(1,n)$为格,$S_\Gamma$为相关球商。证明了如果$S_\Gamma$包含无穷多个极大的全测地线子变种,则$\Gamma$是算术的。我们还证明了$S_\Gamma$的Ax-Schanuel猜想,类似于最近由Mok, Pila和Tsimerman证明的猜想。证明的主要内容之一是在Hodge结构的极化积分变分的周期域中实现$S_\Gamma$,并将完全测地线子变分解释为不可能相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special subvarieties of non-arithmetic ball quotients and Hodge theory
Let $\Gamma \subset \operatorname{PU}(1,n)$ be a lattice, and $S_\Gamma$ the associated ball quotient. We prove that, if $S_\Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $\Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_\Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_\Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信