{"title":"单连通四维李群上左不变para-Kähler结构的分类","authors":"M. W. Mansouri, A. Oufkou","doi":"10.1515/coma-2021-0127","DOIUrl":null,"url":null,"abstract":"Abstract We give a complete classification of left invariant para-Kähler structures on four-dimensional simply connected Lie groups up to an automorphism. As an application we discuss some curvatures properties of the canonical connection associated to these structures as flat, Ricci flat and existence of Ricci solitons.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"88 4","pages":"1 - 17"},"PeriodicalIF":0.5000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The classification of left-invariant para-Kähler structures on simply connected four-dimensional Lie groups\",\"authors\":\"M. W. Mansouri, A. Oufkou\",\"doi\":\"10.1515/coma-2021-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We give a complete classification of left invariant para-Kähler structures on four-dimensional simply connected Lie groups up to an automorphism. As an application we discuss some curvatures properties of the canonical connection associated to these structures as flat, Ricci flat and existence of Ricci solitons.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"88 4\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2021-0127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The classification of left-invariant para-Kähler structures on simply connected four-dimensional Lie groups
Abstract We give a complete classification of left invariant para-Kähler structures on four-dimensional simply connected Lie groups up to an automorphism. As an application we discuss some curvatures properties of the canonical connection associated to these structures as flat, Ricci flat and existence of Ricci solitons.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.