关于四元数函数对数的一个定义

IF 0.7 2区 数学 Q2 MATHEMATICS
G. Gentili, Jasna Prezelj, Fabio Vlacci
{"title":"关于四元数函数对数的一个定义","authors":"G. Gentili, Jasna Prezelj, Fabio Vlacci","doi":"10.4171/jncg/514","DOIUrl":null,"url":null,"abstract":"For a slice--regular quaternionic function $f,$ the classical exponential function $\\exp f$ is not slice--regular in general. An alternative definition of exponential function, the $*$-exponential $\\exp_*$, was given: if $f$ is a slice--regular function, then $\\exp_*(f)$ is a slice--regular function as well. The study of a $*$-logarithm $\\log_*(f)$ of a slice--regular function $f$ becomes of great interest for basic reasons, and is performed in this paper. The main result shows that the existence of such a $\\log_*(f)$ depends only on the structure of the zero set of the vectorial part $f_v$ of the slice--regular function $f=f_0+f_v$, besides the topology of its domain of definition. We also show that, locally, every slice--regular nonvanishing function has a $*$-logarithm and, at the end, we present an example of a nonvanishing slice--regular function on a ball which does not admit a $*$-logarithm on that ball.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"534 ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On a definition of logarithm of quaternionic functions\",\"authors\":\"G. Gentili, Jasna Prezelj, Fabio Vlacci\",\"doi\":\"10.4171/jncg/514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a slice--regular quaternionic function $f,$ the classical exponential function $\\\\exp f$ is not slice--regular in general. An alternative definition of exponential function, the $*$-exponential $\\\\exp_*$, was given: if $f$ is a slice--regular function, then $\\\\exp_*(f)$ is a slice--regular function as well. The study of a $*$-logarithm $\\\\log_*(f)$ of a slice--regular function $f$ becomes of great interest for basic reasons, and is performed in this paper. The main result shows that the existence of such a $\\\\log_*(f)$ depends only on the structure of the zero set of the vectorial part $f_v$ of the slice--regular function $f=f_0+f_v$, besides the topology of its domain of definition. We also show that, locally, every slice--regular nonvanishing function has a $*$-logarithm and, at the end, we present an example of a nonvanishing slice--regular function on a ball which does not admit a $*$-logarithm on that ball.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"534 \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/514\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/514","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

对于切片-正则四元数函数$f,经典指数函数$\exp-f$通常不是切片-正则函数。给出了指数函数的另一个定义,$*$-indexerial$\exp_*$:如果$f$是一个切片-正则函数,那么$\exp_*(f)$也是一个切片–正则函数。研究片-正则函数$f$的$*$-对数$\log_*(f)$由于一些基本原因引起了人们的极大兴趣,本文对此进行了研究。主要结果表明,这种$\log_*(f)$的存在除了取决于其定义域的拓扑结构外,还取决于片的向量部分$f_v$的零集结构——正则函数$f=f_0+f_v$。我们还证明了,在局部,每个切片-正则非零函数都有一个$*$-对数,最后,我们给出了一个非零切片-球上的正则函数的例子,它不允许球上有$*$对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a definition of logarithm of quaternionic functions
For a slice--regular quaternionic function $f,$ the classical exponential function $\exp f$ is not slice--regular in general. An alternative definition of exponential function, the $*$-exponential $\exp_*$, was given: if $f$ is a slice--regular function, then $\exp_*(f)$ is a slice--regular function as well. The study of a $*$-logarithm $\log_*(f)$ of a slice--regular function $f$ becomes of great interest for basic reasons, and is performed in this paper. The main result shows that the existence of such a $\log_*(f)$ depends only on the structure of the zero set of the vectorial part $f_v$ of the slice--regular function $f=f_0+f_v$, besides the topology of its domain of definition. We also show that, locally, every slice--regular nonvanishing function has a $*$-logarithm and, at the end, we present an example of a nonvanishing slice--regular function on a ball which does not admit a $*$-logarithm on that ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信